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1 Lorentzian characterizations

In this section, we consider many possible equivalent characterizations of Lorentzian polynomials of various
degrees. In what follows, feel free to use any results we have proven in class.

1.1 Quadratic characterizations

Let A be an n×n real symmetric matrix with non-negative entries, and let p(x) := x⊤Ax be the associated
quadratic form. Prove that the following are equivalent (assuming p has non-negative coefficients).

1. p is Lorentzian,

2. p is real stable,

3. p is log-concave (or ≡ 0) in the strict positive orthant,

4. the Hessian of log p is negative semidefinite at some point in the strict positive orthant (or p ≡ 0),

5. p(xt+ y) ∈ R[t] is real-rooted for all x,y in the positive orthant,

6. p(xt+ y) ∈ R[t] is real-rooted for all x in the positive orthant and all y ∈ Rn,

7. A has at most one positive eigenvalue,

8. (x⊤Ay)2 ≥ (x⊤Ax)(y⊤Ay) for all x,y in the positive orthant,

9. (x⊤Ay)2 ≥ (x⊤Ax)(y⊤Ay) for all x in the positive orthant and all y ∈ Rn,

10. A is negative semidefinite on the orthogonal complement of Ax for all x in the positive orthant for
which Ax ̸= 0,

11. A is negative semidefinite on the orthogonal complement of Ax for some x in the positive orthant,

12. det(−AS,S) ≤ 0 for all S ⊆ [n], where AI,J denotes the submatrix of A with rows and columns indexed
by I and J respectively.

1.2 General characterizations

Let p(x) be a d-homogeneous polynomial in n variables with non-negative coefficients. We let the term
Lorentzian quadratic refer to a polynomial satisfying any of the equivalent conditions of Section 1.1. We let
Dvp denote the directional derivative of p in direction v, and we let ∂i denote the partial derivative of p
with respect to the variable xi. Further, we define the support of p to be the set of all κ ∈ Zn

≥0 such that
the xκ coefficient of p is non-zero.

We call a polynomial p indecomposable if it cannot be written as the sum of two non-zero polynomials
which depend on disjoint sets of variables. We call a finite set M ⊂ Zn

≥0 M-convex if it satisfies the following
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exchange axiom: for all α,β ∈ M and i ∈ [n] such that αi > βi, there exists j ∈ [n] such that βj > αj and
α− ei + ej ∈ M . Note that if M ⊆ {0, 1}n, then M gives the set of bases of a matroid.

When d ≤ 1, the polynomial p is automatically Lorentzian (and real stable) since p has non-negative
coefficients. For d ≥ 2, prove the following are equivalent (assuming p has non-negative coefficients).

1. p is Lorentzian (or completely log-concave or strongly log-concave, depending on what paper you are
reading),

2. Dv1
· · ·Dvd−2

p is a Lorentzian quadratic for all v1, . . . ,vd−2 in the (strict) positive orthant,

3. (a) the support of p is M-convex, and

(b) ∂i1 · · · ∂id−2
p is a Lorentzian quadratic for all i1, . . . , id−2 ∈ [n],

4. (a) ∂i1 · · · ∂ikp is indecomposable for all 0 ≤ k ≤ d− 2 and i1, . . . , ik ∈ [n], and

(b) ∂i1 · · · ∂id−2
p is a Lorentzian quadratic for all i1, . . . , id−2 ∈ [n],

5. ∂i1 · · · ∂ikp is log-concave (or ≡ 0) in the strict positive orthant for all 0 ≤ k and i1, . . . , ik ∈ [n],

6. (a) p is log-concave (or ≡ 0) in the strict positive orthant, and

(b) ∂ip is Lorentzian for all i ∈ [n].

7. (Dv1
Dv2

Dv3
· · ·Dvd

p)2 ≥ (Dv1
Dv1

Dv3
· · ·Dvd

p)·(Dv2
Dv2

Dv3
· · ·Dvd

p) for all v1, . . . ,vd in the (strict)
positive orthant,

8. there exists v in the strict positive orthant such that ∂i1 · · · ∂ikDd−2−k
v p is a Lorentzian quadratic for

all 0 ≤ k ≤ d− 2 and i1, . . . , ik ∈ [n].

When d ≥ 3, the following are also equivalent to the above conditions.

9. Dvp is Lorentzian for all v in the (strict) positive orthant,

10. (a) p is indecomposable, and

(b) ∂ip is Lorentzian for all i ∈ [n].

2 Other questions on Lorentzian polynomials

You may use the exercises of the previous section in answering these questions.

1. Prove that any homogeneous real stable polynomial (with non-negative coefficients) is Lorentzian.

2. Give an example of a Lorentzian polynomial which is not real stable.

3. Use the mixed volume wikipedia page (https://en.wikipedia.org/wiki/Mixed_volume) to prove
that p(x) = vol (

∑
i xiKi) is Lorentzian for any fixed compact convex sets K1, . . . ,Kn ⊂ Rd.

4. Given a matroid M on ground set E and some subset S ⊆ E, prove that the number ck of bases of M
containing exactly k elements of S forms an ultra log-concave sequence (with respect to rank).

5. Let E = {1, 2, . . . , n} and let M be any non-empty collection of subsets of E, where each subset has
cardinality d. Define pM (x) :=

∑
S∈M xS . Prove that pM is log-concave in the strict positive orthant

if and only if M is the set of bases of a matroid. (Hint: Is there some way to simulate derivatives via
evaluations when a polynomial is multiaffine?)
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6. Prove the following Rayleigh-type condition for a Lorentzian polynomial p of degree d:

p(v) · ∂i∂jp(v) ≤ 2

(
1− 1

d

)
∂ip(v) · ∂jp(v), ∀v ∈ Rn

≥0.

(Hint: Consider first the d = 2 case, and then: Is there some way to simulate evaluations via derivatives
for a general polynomial?)

7. Use the previous exercise to prove a negative dependence property for matroids analogous to spanning
trees which we proved in class. That is, compare the probabilities of i ∈ E being in a given basis of a
matroid, conditioned on j ∈ E being in the basis versus not conditioned on anything. (The constant
which appears in this statement is bounded by 2, but it is conjectured for general matroids to be
replaceable by 8

7 [HSW18].)

8. Give examples of Lorentzian polynomials which shows the constant 2
(
1− 1

d

)
in the above exercise is

tight for all d. (Hint: This one is probably hard. The examples can even be chosen to be a family of
volume polynomials in 3 variables.)

3 High-dimensional expanders

Given a finite set E = {1, 2, . . . , n}, a simplicial complex ∆ is a non-empty collection of subsets of E for
which T ⊆ S ∈ ∆ implies T ∈ ∆. We refer to subsets S ∈ ∆ as the faces of ∆. We say that ∆ is pure if
all maximal faces (called facets) of ∆, with respect to inclusion, have the same cardinality. The 1-skeleton
of ∆ is the graph with vertices given by the set of one-element faces in ∆ and edges given by the set of
two-element faces in ∆. Given S ∈ ∆, the link of S is defined as ∆S := {T \ S : S ⊆ T ∈ ∆}.

Now fix a simplicial complex ∆ on E such that {i} ∈ ∆ for all i ∈ E. Let A be the uniform adjacency
matrix of the 1-skeleton of ∆, defined as the usual adjacency matrix divided by |E|. Let D be the uniform
degree matrix of the 1-skeleton of ∆, defined as the diagonal matrix with diagonal entries given by A · 1.
Define the uniform random walk matrix of ∆ via W := D−1A. Given any S ∈ ∆, let AS , DS , and WS

denote the respective matrices for the 1-skeleton of the link of S. Note that WS is always row stochastic
matrix and thus gives the transition matrix for a random walk on the 1-skeleton of ∆S .

Now consider the following definition, which is the specialization of a more general definition seen recently
in the literature. See [Lau21] for more details, generalizations, and references (but maybe try the first problem
before checking this reference; reading those notes may give some of the answer away).

Definition 3.1 ([Opp18]; see also [Lau21], Definition 19.13 and Exercise 19.16). Let ∆ be a pure simpicial
complex with facets of size d. We say that ∆ is a uniform 0-local spectral expander if

• the 1-skeleton of ∆S is connected for all S ∈ ∆ with |S| ≤ d− 2, and

• λ2(W
S) ≤ 0 for all S ∈ ∆ with |S| = d− 2,

where λ2(W
S) is the second largest eigenvalue of the uniform random walk matrix WS .

As discussed in [Lau21] and the references therein, a corollary of ∆ being a local spectral expander is
that a certain random walk on the facets of ∆ mixes rapidly (with appropriate stationary distribution; here
the uniform distribution). See Lap Chi’s full course notes at https://cs.uwaterloo.ca/~lapchi/cs860/
notes.html for more on this topic, but try the following exercises before digging too deeply into the notes.

3.1 Exercises

These were originally proven in [ALGV19].

1. Warm-up: Let ∆ be the simplicial complex with maximal faces given by the bases of a matroid (i.e.,
the simplicial complex consisting of the independent sets of the matroid). Prove that ∆ is a uniform
0-local spectral expander.

3

https://cs.uwaterloo.ca/~lapchi/cs860/notes.html
https://cs.uwaterloo.ca/~lapchi/cs860/notes.html


2. Harder: Let p be a multiaffine Lorentzian polynomial with p(1) = 1, and let (∆, w) be the weighted
simplicial complex with maximal faces given by the support of p and weight function w defined on the
maximal faces of ∆ via w(S) := pS (the corresponding coefficient of p). Use the results of [Lau21] to
prove that (∆, w) is a 0-local spectral expander, according to Definition 19.13 of [Lau21].
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