Univariate Polynomials

Polynomial Capacity: Theory, Applications, Generalizations

Jonathan Leake

Technische Universitat Berlin

November 5th, 2020

Jonathan Leake (TU Berlin) Univariate Polynomials Winter 2020-2021 1/36



Basic polynomial notation:
@ Cl[x] := v.s. of complex polynomials in one variable.
C9[x] := v.s. of polynomials of degree at most d.
For p € CY[x], we write p(x) = ZZ:O prxk.
monic := the leading coeffcient is 1.
deg(p) := the degree of the polynomial.
A(p) := the roots/zeros of the polynomial, counting multiplicity.

g = 0 — 9, := derivative with respect to x.

Some other notation for this talk:
° (Cg[x . y] := v.s. of bivariate homogeneous polynomials of degree d.
e For p € Cd[x : y], we write p(x : y) = Zi:o prxkyd=k.
o CP! = CU {00} := complex projective line, or Riemann sphere.
@ SLy(C) := 2 x 2 invertible complex matrices, det = 1.
@ SU;(C) := subset of unitary matrices in SLy(C).
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o The big three: roots, coefficients, evaluations
@ Roots and coefficients
@ Real-rooted polynomials
o Coefficients, evaluations, and log-concavity

@ Interlacing polynomials
@ Interlacing via pictures
@ Classic example: matchings of a graph

© The Gauss-Lucas theorem and polar derivatives
@ The derivative and complex roots
@ Laguerre's theorem

@ The granddaddy of 'em all: Grace's theorem
@ The apolarity bilinear form
@ Why we care: a preview of next week
@ SLy(C)-invariance

© Open problems
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Outline

o The big three: roots, coefficients, evaluations
@ Roots and coefficients
@ Real-rooted polynomials
o Coefficients, evaluations, and log-concavity
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The big three

The geometry of polynomials is generally an investigation of the
connections between the various properties of polynomials:

e Algebraic, via the roots/zeros of the polynomial.
o Combinatorial, via the coefficients of the polynomial.

@ Analytic, via the evaluations of the polynomial.

Why do we care? We use features of the interplay between these three
to prove facts about mathematical objects which a priori have nothing to
do with polynomials.

Typical method:
© Encode some object as a polynomial which has some nice properties.
@ Apply operations to that polynomial which preserve those properties.

© Extract information at the end which relates back to the object.
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The fundamental theorem of algebra

Fundamental theorem of algebra: For all monic p € C[x] with
deg(p) = d, there exist r1, ..., ry € C such that

d
Zpkx HX—I’,').
i=1

Corollary: For all p € C§[x : y], there exist (r1 : s1),...,(rq : 54) € CP*

such that
d

d
p(x:y) = ZPkaydfk = H(SiX — riy).
k=0

i=1

In both cases: We call these points the roots of p, and we will often refer
to these two different definitions interchangeably.

Note: The C¢[x : y] = C9[x] case allows roots “at infinity"; consider, e.g.:

p(x)=x* vs  p(x:y)=xfydTk
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A “converse” to the fundamental theorem

Given ry,...,ry € C, there exists a monic polynomial p € C9[x] with roots
rn,...,rq given by

d d
p(x) =[x =r) =D (1) Feq—ilr, ..., ra)x*
i=1 k=0

where ex(ri,..., ) is the elementary symmetric polynomial.

Important fact: This is a formula for the coefficients in terms of the
roots, but no formula exists in the opposite direction.

Consolation prize: The roots are continuous functions of the coefficients.

Hurwitz’s theorem: A limiting sequence of polynomials with no roots in
an open set U C C is either identically zero or has no roots in U.
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Real-rooted polynomials

A polynomial p € R[x] is real-rooted if all of its roots are real. (We also
sometimes consider p = 0 to be real-rooted.)

Lemma: The roots of p € R[x] are real or come in conjugate pairs.

Proof: p(x) = p(x), where X is complex conjugate.

Special continuity of real roots: If p € R[x] has a simple real root ry,
then real perturbations of p will not move ry off the real line. (Roots can
only move off the real line in conjugate pairs.)

Corollary: Real perturbations of real-rooted polynomials with simple roots
are still real-rooted.

Corollary: The set of real-rooted polynomials in R¥[x] is equal to the
closure of its interior (which is non-empty).
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Linear preservers of real-rootedness

Rolle’s theorem for polynomials: Between any two zeros of a
polynomial p € R[x], there is at least one zero of dyp.

Corollary: If p € R[x] has only real roots, then dxp has only real roots.
Proof: Apply Rolle's theorem to each consecutive pair of roots.

In modern language: The linear operator 0y preserves real-rootedness.

What about other linear preservers?

@ Shifted derivative: p — p 4+ adyp for a € R.

@ Scaling: p+— p(rx) for r € R.

O Inversion: p > x? - p(x1), when p € RY[x].

© SLy(R)-action: act on the roots by real Mobius transformation.

(This is a linear action! We will discuss this in more detail.)

Note: Last two preservers rely on a choice of degree, which is equivalent
to specifying multiplicity of the root at infinity.
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Newton's inequalities

Newton’s inequalities: If p € R[x] is real-rooted and deg(p) = d, then
Po P1 P2 Pd

@ @) @ @
is a log-concave sequence (c,% > Ck—1Ck+1). This condition is called ultra
log-concave (ULC), and if px > 0, this implies log-concave and unimodal.

Proof: First note that writing p(x) = ZZ:O (‘Z)ﬁkxk gives

Oup =1 g d /4
% = Z ( « >,5k+1xk and x9. p(Xﬁl) = Z <k>ﬁd—kxka

k=0 k=0
and both preserve real-rootedness. Apply these operators to reduce to
2
> () B
k)T
k=0

for any j. Real-rootedness implies 0 < b?> — 4ac = 4(;3j2+1 — PiPj+2).
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A little more on the proof of Newton's inequalities

How exactly do we reduce to quadratics?
Let's consider everything in terms of p € R;’[X y].

First: O is the “same” in all of R[x], R9[x], and RZ[x : y].

How does 0, for p = 3", pkx¥y9~* translate to p € RY[x|?
@ First flip coefficients: p — x9 - p(x~1).
@ Now apply usual derivative: p — Oxp.
© Finally, flip coefficients back with new degree: p s x9~1. p(x~1).

So 0, preserves real-rootedness.
Further, we can now easily reduce to quadratics in RY[x : y] via:

2

d
2 iodooj d\ . ko d-k| _ 2\ . kook
~i0%0y J[Z<k>pkxy =D ) Beixy* e
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Some “converses” to Newton's inequalities

Kurtz '92: For p(x) = Zzzo prxX, if we have
pi > 4p_1pki1 for all valid k,
then p is real-rooted. (Discriminant condition when d = 2.)

An actual converse: For p(x : y) € R9[x : y] with > 0 coefficients, the
following are equivalent.

@ The coefficients of p form an ultra log-concave sequence.

Q 8;'(6{,p(x . y) is log-concave as a bivariate function on R2 (the
positive orthant) for all valid i/, j.

Q@ 0,07 "2p(x : y) is a real-rooted quadratic for all valid /, and the
coefficient sequence of p has no “internal zeros”.

Corollary: Real-rooted polynomials are log-concave in the positive orthant.

Foreshadowing: Proof will go via Lorentzian polynomials.
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The method, revisited

The method:

© Encode some object as a polynomial which has some nice properties.
o Real-rootedness, ULC coefficients, log-concavity, etc.

@ Apply operations to that polynomial which preserve those properties.
o Derivatives, SL(R), others?

© Extract information at the end which relates back to the object.
o Coefficients, evaluations, log-concavity, capacity, etc.

Classic examples:

@ Graph polynomials where coefficients count things (matching
polynomial, spanning tree polynomial).

@ Polynomials where evaluations count things (chromatic polynomial,
Ehrhart polynomial).

@ Other generating functions (Schur polynomials, contingency tables).
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Outline

@ Interlacing polynomials
@ Interlacing via pictures
@ Classic example: matchings of a graph
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Interlacing roots

Given real-rooted polynomials p, g € R[x] with positive leading
coefficients, we say that p interlaces g and write p < q if

< Ao(p) < A2(q) < Ai(p) < Ai(9),

where Ap(p) < --- < A1(p) are the ordered roots of p. This is a closed
property, and implies deg(q) — deg(p) € {0,1}. If all inequalities are
strict, we say that p strictly interlaces q. This is the interior.

(x+7)(x+5.8)(x+3)(x+1.5) :

Key picture is the graph of a(x) Eg. 1 8) (0 16) (x15) (x12)

p(x)

[ /

-
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Characterization of interlacing polynomials

Let p, g € RYx] be monic with d simple roots such that p, g don't share
any roots. (True more generally, but this is simpler.)

Theorem (Hermite-Kakeya-Obreschkoff): The following are equivalent.
® p < g (thatis, --- < A2(p) < A2(q) < A1(p) < Ai(q)).
e sgn(p(\i(q))) = (—1)"~1 for all /.
@ ap + bgq is real-rooted for all a, b € R.
o W(p,q)=p-0xq—q-9xp>0onR

Corollary: p — p + aOxp preserves real-rootedness for o € R.
Proof: O,p < p by Rolle's theorem.

Corollary: If p < g and p < r, then p < aqg + br for all a, b > 0.
(The polynomials g and r have a common interlacer.)
Proof: E.g., bilinearity of Wronskian W(p, q).
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Proof of characterization

Theorem: The following are equivalent.
o pKagq.
@ ap + bgq is real-rooted for all a, b € R.
o W(p,q) =p-0xq—q-0xp>0o0nR.

Proof by picture: ap+ bg =0 — g =—1.

[ /

-

p? p?
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The Hermite-Biehler theorem

Theorem (Hermite-Biehler): Given monic p, g € R9[x] with d roots, we
have p < q strictly iff p + iq has all its roots in the upper half-plane.
Proof by picture: Consider winding number of

Along real line: (Re, Im) =... (=, +),(—, =), (+,—),(+,+) = % loops.
Along arc: p+ig~ (14 i)x? = half of circle gives half of d loops.

Corollary: If p has simple real roots, then Oxp + ip has all its roots in the
upper half-plane.
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Classic example: matchings of a graph

Given a graph G = (V, E), a k-matching M of G is a selection of k
edges for which no two edges touch the same vertex.

LIvi/2]
Matching polynomial: Mg (x) := Z (—=1)Kmyx!VI=2k,
k=0
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Classic example: matchings of a graph

Lvi/2]
Matching polynomial: Mg(x) := Z (—1)KmyxIVI=2k,
k=0

Classic theorem (Heilmann-Lieb '72): For any graph G, the matching
polynomial has only real roots.

Corollary: The sequence my is ultra log-concave (log-concave, unimodal).
Proof: Mg(x) real-rooted iff pug(x) := >, mkx* is real-rooted. Why?

Lvi/2]
@ Mg(x)=x"I Z mi- (—x ) =XV p(—x72).
k=0
LIvi/2] Lvi/2]
Q uc(x) = H (x +r;) <= Mg(x)=xIVI mod?2 H (rix® —1).
i=1 i=1

© Roots of Mg(x) come in £ pairs (except at x = 0).
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Proof of the Heilmann-Lieb theorem

LIvi/2]
Matching polynomial: Mg(x) := Z xIVI=2M] — Z myx!V1=2k,
MeG k=0

Proof: Induction on interlacing relation Mg\, < Mg.
@ Recurrence relation for Mg(x) based on subgraphs, for any v € V:

MG(X) =X MG\V(X) - Z MG\uv(X)'

u~v

- /\/] MG\uv X)
© Divide through by Mg\,: I\/I v sz\/;/ Mg\ (x
Mg (x)
> = Ma\v(x) o
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Outline

© The Gauss-Lucas theorem and polar derivatives
@ The derivative and complex roots
@ Laguerre's theorem
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The Gauss-Lucas theorem

Theorem (Gauss-Lucas): If the roots of p € C[x] are contained in a
convex set K C C, then the roots of Oxp are also contained in K
Proof: By the product rule for Oy, if dxp(r) = 0 then

0, Sl =) ¢ r—A(p
= T (r = Xi(p)) _Z:: = Ailp) Z\

Rearranging then gives

—_

d A(p o Al()|2
— r = AP - Xi(p).
S e = =S

J=1 [r=X;(p)P?
This is a convex combination of the A;(p).

Conceptual proof: 0 =), |rr /\’\((p”))‘z <= equillibria of electric potential.

Corollary: 0, preserves real-, half-plane-, or disc-rooted polynomials
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The polar derivative

Recall: Both 0, and 0, for p € RY[x : y] preserve real-rootedness.
Gauss-Lucas: 0, preserves other sets.

What about 0,7
dy = (flip coeff.)™! 0 9, o (flip coeff.)

Since flipping coeff. <= inverting roots, 0, preserves roots in sets which
are inverses of convex sets. E.g.: half-planes, exterior of discs.

More generally: 0, preserves roots in any set “convex with respect to 0".
Why? Flipping coefficients/inverting roots maps 0 «— oc.

Flipping coefficients is a Mobius transformation. What about others?

o If ¢ is a Mdbius transform, then ¢! 0 9, o ¢ preserves roots in
¢~1(K) for any convex K. So what?
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More general polar derivatives via Mobius transformations

Mébius transformation: ¢ € SL»(C) and ¢ : CP! — CP!.
On polynomials, ¢ acts on roots: For p € Cd[x : y],

¢ = [a ﬂ = ¢-p=p <¢‘1<X>> = p(ax + By : yx + by).
v 0 y
Lemma: Given ¢! as above and p € CY[x : y], we have
(¢ 0 Dx 0 p)p = (dx +79y)p.
Proof:

(0 odkod)p =0 dlp(ax + By : yx + dy)]

= ¢~ " [(adx + 79y )p)(ax + By : yx + dy)
= (a0x + 70y )p.
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Laguerre's theorem

Laguerre’s theorem: (a0, + v0,) preserves roots in circular regions
C c CP! which do not contain («a : 7).

Circular regions: Equivalent definitions.

@ Mobius transformations of the unit disc.

o Half-spaces in R intersected with the Riemann sphere (= CP!).
E.g.: Discs, exteriors of discs (with 00), half-planes.

Proof: By the lemma, adx + 70, = ¢~ 10x¢ with ¢~1(c0) = (a : 7).
@ All roots of p are contained in C C CP! with (a:7) ¢ C.
@ Since ¢ acts on roots, roots of ¢ - p are contained in ¢- C € CP* with

xc=d(a:y) g6 C.
© Therefore ¢ - C C C is convex and Gauss-Lucas applies.
Q Finally, the inverse action ¢! moves roots back to C ¢ CP*.
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Polar derivatives and real-rooted polynomials

Fact: If p is real-rooted, then (a0x + 70, )p is real-rooted for all a,y € R.
Proof: ad, + 0, = ¢"10x4, and we can choose ¢ € SL(R).

Corollary: The roots of Oxp and 0, p are interlaced (by
Hermite-Kakeya-Obreschkoff theorem).

Fact: If p < g, then L := a0y + v0, implies Lp < Lq for all a,y € R.
Proof: p < g

@ — p+iq has all roots in the closure of upper half-plane = H, (by
Hermite-Biehler theorem),

@ — L(p+iq)=Lp+ilLq has all roots in H,
©@ — Lp < Lqg (by Hermite-Biehler again).

Further: Real linear preservers of roots in H 4 preserve interlacing.
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@ The granddaddy of 'em all: Grace's theorem
@ The apolarity bilinear form
@ Why we care: a preview of next week
@ SLy(C)-invariance
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A special bilinear form on polynomials

Laguerre: If (r; :s1),...,(rqd :s4) € C and (a1 : 1) € C, then

d
r(x:y) = (c10x +10y) H(s,-x —riy) has all roots in C.
i=1

Induct: If (r; : s;) € C and (o : ;) € C, then

d’ d
r(x:y)= H(alﬁ’x +m10y) H(s,-x —riy) has all roots in C.
i=1 i=1

If d’ < d, the root conditions guarantee that r # 0.
Candidate for “interesting” bilinear form for p, g € (C‘,’_f[x y]:
(P, @) = p(dy : —0.)a(x : y) € C.

Also can be defined for C?[x]. In terms of coefficients?
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Grace's apolarity theorem

Theorem (Grace): If p,q € C9[x] and a circular region C are such that
the roots of g are all in C and the roots of p are all not in C, then

d

Z (Z) _1(—1)kqud—k # 0.

k=0

Proof: If we can show that this bilinear form is equal up to scalar the one

from the previous slide, then the previous slide proves the theorem. On the
monomial basis, we compute:

Ky Iy T = (1) ROy

= (1) k!(d — k) §j—q &

= (-1)%d! [(Z) _1(—1)k : 5j=dk] :
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Grace's theorem: Why do we care? (A preview)

Some bilinear form is non-zero. So what?
Many classical theorems are proven using Grace's theorem. How?

First: We can interpret the bilinear form as a choice of isomorphism
between CY[x : y] and its dual space C¢[x : y]* via p +— (p,-)9.

Next: Induce a map from linear operators on polynomials to polynomials
in more variables. Letting £, denote the space of operators,

!
Lg=Clx:y]@CIx:y]* = Cl[x:y] @ Cl[x:y] = C%d’d)[x D,z wl.
Denoting this by Symb? : £4 5 C%d’d) [x:y,z: w] gives:
J d
Tlpl(x: y) = (Symb[T)(x : y,z: w), plz : w))

Finally: Zero location of p and Symb?[T] implies non-vanishing of T[p].
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SL(C) and the apolarity form

Fact: The apolarity form (p, )¢ is uniquely SL,(C)-invariant:
(p.q)?=(¢-p,¢-q)?  forall p,q,o.
Makes sense, as the apolarity theorem is SLo(C) invariant.
A special SL(C)-invariant operator D:
DIp(x : y)q(z : w)] = (9D — 3,0,) [p(x : y)a(z : w)].

Corollary(?): D[pq] = (p, q)¢ up to scalar.
Proof: Uniqueness of SLy(C)-invariant bilinear form, or easy computation.

Stronger: The D map preserves multivariate root location properties for
polynomials p(x : y,z : w). (The D map acts on the space

(C;d’d)[x .y, z : w] of polynomials taking input in CP! x CP*))
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An aside: Representation theory of SL,(C)

Theorem: The finite dimensional irreducible representations of SLo(C) are
precisely given by Vy := CZ[X :y] for all d > 0.

Theorem (Clebsch-Gordon): The tensor square decomposes as

ClDNx iy 2 W] 2 V@ Vg = Vog @ Vag 2 ® Vg 4@ -0 Vo V.
Fact: The D = 0,0y — 0,0, map actsas D : Vg ® Vg — Vg1 ® Vy_1.
SLy(C)-invariance implies D simply projects away from the top component
in the above decomposition (the V54 component).

Other names: Cayley's Q) process, transvectants, Reynolds operator, etc.

Corollary(?): The Vp component picks out the apolarity form.
Proof: Uniqueness of SLy(C)-invariant bilinear form. (The decomposition
is also itself a proof of uniqueness.)
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Outline

© Open problems

Jonathan Leake (TU Berlin) Univariate Polynomials Winter 2020-



Sendov's conjecture

Suppose p € C[x] has all its roots A\1(p), ..., Ad(p) in the closed unit disc.
How far away can the critical points be?

Conjectural worst case: p(x) = x? —1 = |\;i(p) — \j(0xp)| = L.

Sendov’s conjecture: Vi 3j such that [Aj(p) — A\j(Oxp)| < 1. That is,
every zero of p is within distance 1 of a critical point of p.

Known facts:
@ Known to be true for d < 8.

@ For d = 3, critical points are the foci of the inscribed ellipse of the
convex hull of the zeros.

e If [\i(p)| = 1, then the bound is known for that choice of i.

@ For any particular fixed root ry, there is a number dy for which
d > dp implies the bound for \;(p) = ro.

@ The conjectural worst case is not the only local maximum.
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Apolarity theorem for SU,(C) form

Grace’s theorem: Non-vanishing for SL>(C)-invariant bilinear form.

Can we extend this beyond SL,(C)? There isn't quite an
SL,(C)-invariant form, but there is an SU,(C)-invariant form for

polynomials p € Cd[xq : - -+ : x| with p(x) = > Puxt:
d\ L
Py =" ( > Py
— \M
|p|=d

Open question: For what classes of polynomials do we get a Grace-type
theorem for this bilinear form?

Alternative form: (p,q)? = DY(p(x)q(z)) for D := Z@Xﬁz’..
i=1

Another idea: Extend to multivariate setting via SLo(C)"” (next week).
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