# Univariate Polynomials Polynomial Capacity: Theory, Applications, Generalizations

Jonathan Leake

Technische Universität Berlin

November 5th, 2020

### Notation

#### Basic polynomial notation:

- $\mathbb{C}[x] := v.s.$  of complex polynomials in one variable.
- $\mathbb{C}^{d}[x] := v.s.$  of polynomials of degree at most d.
- For  $p \in \mathbb{C}^d[x]$ , we write  $p(x) = \sum_{k=0}^d p_k x^k$ .
- monic := the leading coeffcient is 1.
- deg(p) := the degree of the polynomial.
- $\lambda(p) :=$  the roots/zeros of the polynomial, counting multiplicity.
- $\frac{d}{dx} = \frac{\partial}{\partial x} = \partial_x :=$  derivative with respect to x.

#### Some other notation for this talk:

- $\mathbb{C}_h^d[x:y] := v.s.$  of bivariate homogeneous polynomials of degree d.
- For  $p \in \mathbb{C}_h^d[x:y]$ , we write  $p(x:y) = \sum_{k=0}^d p_k x^k y^{d-k}$ .
- $\mathbb{CP}^1=\mathbb{C}\cup\{\infty\}:=$  complex projective line, or Riemann sphere.
- $SL_2(\mathbb{C}) := 2 \times 2$  invertible complex matrices, det = 1.
- $SU_2(\mathbb{C}) :=$  subset of unitary matrices in  $SL_2(\mathbb{C})$ .

# Outline

### The big three: roots, coefficients, evaluations

- Roots and coefficients
- Real-rooted polynomials
- Coefficients, evaluations, and log-concavity

### Interlacing polynomials

- Interlacing via pictures
- Classic example: matchings of a graph
- The Gauss-Lucas theorem and polar derivatives
  - The derivative and complex roots
  - Laguerre's theorem
- 4 The granddaddy of 'em all: Grace's theorem
  - The apolarity bilinear form
  - Why we care: a preview of next week
  - SL<sub>2</sub>(ℂ)-invariance

### Open problems

# Outline

### The big three: roots, coefficients, evaluations

- Roots and coefficients
- Real-rooted polynomials
- Coefficients, evaluations, and log-concavity

#### Interlacing polynomials

- Interlacing via pictures
- Classic example: matchings of a graph
- 3 The Gauss-Lucas theorem and polar derivatives
  - The derivative and complex roots
  - Laguerre's theorem
- The granddaddy of 'em all: Grace's theorem
  - The apolarity bilinear form
  - Why we care: a preview of next week
  - SL<sub>2</sub>(C)-invariance

### Open problems

# The big three

The **geometry of polynomials** is generally an investigation of the connections between the various properties of polynomials:

- Algebraic, via the roots/zeros of the polynomial.
- **Combinatorial**, via the coefficients of the polynomial.
- Analytic, via the evaluations of the polynomial.

Why do we care? We use features of the interplay between these three to prove facts about mathematical objects which a priori have nothing to do with polynomials.

#### Typical method:

- **()** Encode some object as a polynomial which has some nice properties.
- Apply operations to that polynomial which preserve those properties.
- **③** Extract information at the end which relates back to the object.

# The fundamental theorem of algebra

**Fundamental theorem of algebra:** For all monic  $p \in \mathbb{C}[x]$  with  $\deg(p) = d$ , there exist  $r_1, \ldots, r_d \in \mathbb{C}$  such that

$$p(x) = \sum_{k=0}^{d} p_k x^k = \prod_{i=1}^{d} (x - r_i).$$

**Corollary:** For all  $p \in \mathbb{C}_h^d[x : y]$ , there exist  $(r_1 : s_1), \ldots, (r_d : s_d) \in \mathbb{CP}^1$  such that

$$p(x:y) = \sum_{k=0}^{d} p_k x^k y^{d-k} = \prod_{i=1}^{d} (s_i x - r_i y).$$

**In both cases:** We call these points the *roots of p*, and we will often refer to these two different definitions interchangeably.

**Note:** The  $\mathbb{C}_h^d[x:y] \cong \mathbb{C}^d[x]$  case allows roots "at infinity"; consider, e.g.:

$$p(x) = x^k$$
 vs  $p(x : y) = x^k y^{d-k}$ .

### A "converse" to the fundamental theorem

Given  $r_1, \ldots, r_d \in \mathbb{C}$ , there exists a monic polynomial  $p \in \mathbb{C}^d[x]$  with roots  $r_1, \ldots, r_d$  given by

$$p(x) = \prod_{i=1}^{d} (x - r_i) = \sum_{k=0}^{d} (-1)^{d-k} e_{d-k}(r_1, \dots, r_d) x^k$$

where  $e_k(r_1, \ldots, r_n)$  is the elementary symmetric polynomial.

**Important fact:** This is a formula for the coefficients in terms of the roots, but no formula exists in the opposite direction.

**Consolation prize:** The roots are continuous functions of the coefficients.

**Hurwitz's theorem:** A limiting sequence of polynomials with no roots in an open set  $U \subset \mathbb{C}$  is either identically zero or has no roots in U.

A polynomial  $p \in \mathbb{R}[x]$  is **real-rooted** if all of its roots are real. (We also sometimes consider  $p \equiv 0$  to be real-rooted.)

**Lemma:** The roots of  $p \in \mathbb{R}[x]$  are real or come in conjugate pairs. **Proof:**  $p(x) = \overline{p(\bar{x})}$ , where  $\bar{x}$  is complex conjugate.

**Special continuity of real roots:** If  $p \in \mathbb{R}[x]$  has a simple real root  $r_0$ , then real perturbations of p will not move  $r_0$  off the real line. (Roots can only move off the real line in conjugate pairs.)

**Corollary:** Real perturbations of real-rooted polynomials with simple roots are still real-rooted.

**Corollary:** The set of real-rooted polynomials in  $\mathbb{R}^d[x]$  is equal to the closure of its interior (which is non-empty).

### Linear preservers of real-rootedness

**Rolle's theorem for polynomials:** Between any two zeros of a polynomial  $p \in \mathbb{R}[x]$ , there is at least one zero of  $\partial_x p$ .

**Corollary:** If  $p \in \mathbb{R}[x]$  has only real roots, then  $\partial_x p$  has only real roots. **Proof:** Apply Rolle's theorem to each consecutive pair of roots.

In modern language: The linear operator  $\partial_x$  preserves real-rootedness.

#### What about other linear preservers?

- **1** Shifted derivative:  $p \mapsto p + \alpha \partial_x p$  for  $\alpha \in \mathbb{R}$ .
- **2** Scaling:  $p \mapsto p(rx)$  for  $r \in \mathbb{R}$ .
- **③** Inversion:  $p \mapsto x^d \cdot p(x^{-1})$ , when  $p \in \mathbb{R}^d[x]$ .
- SL<sub>2</sub>(ℝ)-action: act on the roots by real Möbius transformation. (This is a linear action! We will discuss this in more detail.)

**Note:** Last two preservers rely on a choice of degree, which is equivalent to specifying multiplicity of the root at infinity.

### Newton's inequalities

**Newton's inequalities:** If  $p \in \mathbb{R}[x]$  is real-rooted and deg(p) = d, then

$$\frac{p_0}{\binom{d}{0}}, \frac{p_1}{\binom{d}{1}}, \frac{p_2}{\binom{d}{2}}, \dots, \frac{p_d}{\binom{d}{d}}$$

is a log-concave sequence  $(c_k^2 \ge c_{k-1}c_{k+1})$ . This condition is called **ultra log-concave (ULC)**, and if  $p_k > 0$ , this implies log-concave and unimodal.

**Proof:** First note that writing  $p(x) = \sum_{k=0}^{d} {d \choose k} \tilde{p}_k x^k$  gives

$$\frac{\partial_x p}{d} = \sum_{k=0}^{d-1} \binom{d-1}{k} \tilde{p}_{k+1} x^k \quad \text{and} \quad x^d \cdot p(x^{-1}) = \sum_{k=0}^d \binom{d}{k} \tilde{p}_{d-k} x^k,$$

and both preserve real-rootedness. Apply these operators to reduce to

$$\sum_{k=0}^{2} \binom{2}{k} \tilde{p}_{k+j} x^{k}$$

for any j. Real-rootedness implies  $0 \le b^2 - 4ac = 4(\tilde{p}_{j+1}^2 - \tilde{p}_j \tilde{p}_{j+2}).$ 

# A little more on the proof of Newton's inequalities

How exactly do we reduce to quadratics? Let's consider everything in terms of  $p \in \mathbb{R}_{h}^{d}[x : y]$ .

**First:**  $\partial_x$  is the "same" in all of  $\mathbb{R}[x]$ ,  $\mathbb{R}^d[x]$ , and  $\mathbb{R}^d_h[x:y]$ .

How does  $\partial_y$  for  $p = \sum_k p_k x^k y^{d-k}$  translate to  $p \in \mathbb{R}^d[x]$ ?

- First flip coefficients:  $p \mapsto x^d \cdot p(x^{-1})$ .
- **2** Now apply usual derivative:  $p \mapsto \partial_x p$ .
- Solution Finally, flip coefficients back with new degree:  $p \mapsto x^{d-1} \cdot p(x^{-1})$ .

#### So $\partial_y$ preserves real-rootedness.

Further, we can now easily reduce to quadratics in  $\mathbb{R}_{h}^{d}[x : y]$  via:

$$\frac{2}{d!}\partial_x^j\partial_y^{d-2-j}\left[\sum_{k=0}^d \binom{d}{k}\tilde{p}_kx^ky^{d-k}\right] = \sum_{k=0}^2 \binom{2}{k}\tilde{p}_{k+j}x^ky^{2-k}.$$

# Some "converses" to Newton's inequalities

**Kurtz '92:** For  $p(x) = \sum_{k=0}^{d} p_k x^k$ , if we have

 $p_k^2 \ge 4p_{k-1}p_{k+1}$  for all valid k,

then p is real-rooted. (Discriminant condition when d = 2.)

**An actual converse:** For  $p(x : y) \in \mathbb{R}_h^d[x : y]$  with  $\geq 0$  coefficients, the following are equivalent.

- The coefficients of *p* form an ultra log-concave sequence.
- ∂<sup>i</sup><sub>x</sub>∂<sup>j</sup><sub>y</sub>p(x : y) is log-concave as a bivariate function on ℝ<sup>2</sup><sub>+</sub> (the positive orthant) for all valid *i*, *j*.
- **3**  $\partial_x^i \partial_y^{d-i-2} p(x : y)$  is a real-rooted quadratic for all valid *i*, and the coefficient sequence of *p* has no "internal zeros".

Corollary: Real-rooted polynomials are log-concave in the positive orthant.

Foreshadowing: Proof will go via Lorentzian polynomials.

# The method, revisited

#### The method:

**()** Encode some object as a polynomial which has some nice properties.

- Real-rootedness, ULC coefficients, log-concavity, etc.
- **②** Apply operations to that polynomial which preserve those properties.
  - Derivatives, SL<sub>2</sub>(R), others?
- Sextract information at the end which relates back to the object.
  - Coefficients, evaluations, log-concavity, capacity, etc.

#### **Classic examples:**

- Graph polynomials where coefficients count things (matching polynomial, spanning tree polynomial).
- Polynomials where evaluations count things (chromatic polynomial, Ehrhart polynomial).
- Other generating functions (Schur polynomials, contingency tables).

# Outline

### 1 The big three: roots, coefficients, evaluations

- Roots and coefficients
- Real-rooted polynomials
- Coefficients, evaluations, and log-concavity

### Interlacing polynomials

- Interlacing via pictures
- Classic example: matchings of a graph
- 3 The Gauss-Lucas theorem and polar derivatives
  - The derivative and complex roots
  - Laguerre's theorem
- The granddaddy of 'em all: Grace's theorem
  - The apolarity bilinear form
  - Why we care: a preview of next week
  - SL<sub>2</sub>(C)-invariance

### Open problems

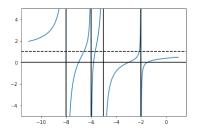
### Interlacing roots

Given real-rooted polynomials  $p, q \in \mathbb{R}[x]$  with positive leading coefficients, we say that p interlaces q and write  $p \ll q$  if

$$\cdots \leq \lambda_2(p) \leq \lambda_2(q) \leq \lambda_1(p) \leq \lambda_1(q),$$

where  $\lambda_n(p) \leq \cdots \leq \lambda_1(p)$  are the ordered roots of p. This is a closed property, and implies  $\deg(q) - \deg(p) \in \{0, 1\}$ . If all inequalities are strict, we say that p strictly interlaces q. This is the interior.

Key picture is the graph of 
$$\frac{q(x)}{p(x)}$$
. E.g.  $\frac{(x+7)(x+5.8)(x+3)(x+1.5)}{(x+8)(x+6)(x+5)(x+2)}$ :



# Characterization of interlacing polynomials

Let  $p, q \in \mathbb{R}^{d}[x]$  be monic with d simple roots such that p, q don't share any roots. (True more generally, but this is simpler.)

Theorem (Hermite-Kakeya-Obreschkoff): The following are equivalent.

- $p \ll q$  (that is,  $\cdots < \lambda_2(p) < \lambda_2(q) < \lambda_1(p) < \lambda_1(q)$ ).
- $sgn(p(\lambda_i(q))) = (-1)^{i-1}$  for all *i*.
- ap + bq is real-rooted for all  $a, b \in \mathbb{R}$ .
- $W(p,q) = p \cdot \partial_x q q \cdot \partial_x p \ge 0$  on  $\mathbb{R}$ .

**Corollary:**  $p \mapsto p + \alpha \partial_x p$  preserves real-rootedness for  $\alpha \in \mathbb{R}$ . **Proof:**  $\partial_x p \ll p$  by Rolle's theorem.

**Corollary:** If  $p \ll q$  and  $p \ll r$ , then  $p \ll aq + br$  for all  $a, b \ge 0$ . (The polynomials q and r have a **common interlacer**.) **Proof:** E.g., bilinearity of Wronskian W(p, q).

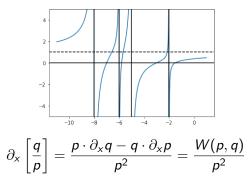
### Proof of characterization

Theorem: The following are equivalent.

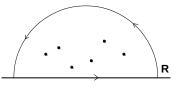
- *p* ≪ *q*.
- ap + bq is real-rooted for all  $a, b \in \mathbb{R}$ .

• 
$$W(p,q) = p \cdot \partial_x q - q \cdot \partial_x p \geq 0$$
 on  $\mathbb R$ 

**Proof by picture:**  $ap + bq = 0 \iff \frac{q}{p} = -\frac{a}{b}$ .



**Theorem (Hermite-Biehler):** Given monic  $p, q \in \mathbb{R}^d[x]$  with d roots, we have  $p \ll q$  strictly iff p + iq has all its roots in the upper half-plane. **Proof by picture:** Consider winding number of

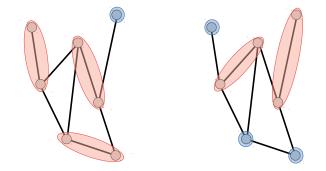


Along real line: (Re, Im) = ..., (-, +), (-, -), (+, -),  $(+, +) = \frac{d}{2}$  loops. Along arc:  $p + iq \approx (1 + i)x^d \implies$  half of circle gives half of d loops.

**Corollary:** If *p* has simple real roots, then  $\partial_x p + ip$  has all its roots in the upper half-plane.

### Classic example: matchings of a graph

Given a graph G = (V, E), a *k*-matching *M* of *G* is a selection of *k* edges for which no two edges touch the same vertex.



Matching polynomial: 
$$M_G(x) := \sum_{k=0}^{\lfloor |V|/2 \rfloor} (-1)^k m_k x^{|V|-2k}.$$

# Classic example: matchings of a graph

Matching polynomial: 
$$M_G(x) := \sum_{k=0}^{\lfloor |V|/2 \rfloor} (-1)^k m_k x^{|V|-2k}.$$

**Classic theorem (Heilmann-Lieb '72):** For any graph *G*, the matching polynomial has only real roots.

**Corollary:** The sequence  $m_k$  is ultra log-concave (log-concave, unimodal). **Proof:**  $M_G(x)$  real-rooted iff  $\mu_G(x) := \sum_k m_k x^k$  is real-rooted. Why?

• 
$$M_G(x) = x^{|V|} \cdot \sum_{k=0}^{\lfloor |V|/2 \rfloor} m_k \cdot (-x^{-2})^k = x^{|V|} \cdot \mu_G(-x^{-2}).$$

### Proof of the Heilmann-Lieb theorem

Matching polynomial: 
$$M_G(x) := \sum_{M \in G} x^{|V|-2|M|} = \sum_{k=0}^{\lfloor |V|/2 \rfloor} m_k x^{|V|-2k}.$$

**Proof:** Induction on interlacing relation  $M_{G\setminus v} \ll M_G$ .

**Q** Recurrence relation for  $M_G(x)$  based on subgraphs, for any  $v \in V$ :

$$M_G(x) = x \cdot M_{G \setminus v}(x) - \sum_{u \sim v} M_{G \setminus uv}(x).$$

Obvide through by 
$$M_{G\setminus v}$$
:  $\frac{M_G(x)}{M_{G\setminus v}(x)} = x - \sum_{u \sim v} \frac{M_{G\setminus uv}(x)}{M_{G\setminus v}(x)}$ .
 $\partial_x \left[ x - \sum_{u \sim v} \frac{1}{M_{G\setminus v}(x)} \right] \ge 0 \implies \frac{M_G(x)}{M_{G\setminus v}(x)} = \frac{1}{M_{G\setminus v}(x)}$ .

# Outline

# Roots and coefficients Real-rooted polynomials Coefficients, evaluations, and log-concavity Interlacing via pictures Classic example: matchings of a graph 3 The Gauss-Lucas theorem and polar derivatives The derivative and complex roots Laguerre's theorem The apolarity bilinear form • Why we care: a preview of next week • $SL_2(\mathbb{C})$ -invariance

### Open problems

### The Gauss-Lucas theorem

**Theorem (Gauss-Lucas):** If the roots of  $p \in \mathbb{C}[x]$  are contained in a convex set  $K \subset \mathbb{C}$ , then the roots of  $\partial_x p$  are also contained in K. **Proof:** By the product rule for  $\partial_x$ , if  $\partial_x p(r) = 0$  then

$$0 = \overline{\frac{\partial_x p}{p}(r)} = \overline{\frac{\sum_{i=1}^d \prod_{j \neq i} (r - \lambda_j(p))}{\prod_{i=1}^d (r - \lambda_i(p))}} = \overline{\sum_{i=1}^d \frac{1}{r - \lambda_i(p)}} = \sum_{i=1}^d \frac{r - \lambda_i(p)}{|r - \lambda_i(p)|^2}.$$

Rearranging then gives

$$\sum_{i=1}^d \frac{r}{|r-\lambda_i(p)|^2} = \sum_{i=1}^d \frac{\lambda_i(p)}{|r-\lambda_i(p)|^2} \implies r = \sum_{i=1}^d \frac{\frac{1}{|r-\lambda_i(p)|^2}}{\sum_{j=1}^d \frac{1}{|r-\lambda_j(p)|^2}} \cdot \lambda_i(p).$$

This is a convex combination of the  $\lambda_i(p)$ .

**Conceptual proof:**  $0 = \sum_{i} \frac{r - \lambda_i(p)}{|r - \lambda_i(p)|^2} \iff$  equillibria of electric potential.

**Corollary:**  $\partial_x$  preserves real-, half-plane-, or disc-rooted polynomials.

23 / 36

### The polar derivative

**Recall:** Both  $\partial_x$  and  $\partial_y$  for  $p \in \mathbb{R}^d_h[x : y]$  preserve real-rootedness. **Gauss-Lucas:**  $\partial_x$  preserves other sets.

What about  $\partial_y$ ?

$$\partial_y = (\text{flip coeff.})^{-1} \circ \partial_x \circ (\text{flip coeff.})$$

Since flipping coeff.  $\iff$  inverting roots,  $\partial_y$  preserves roots in sets which are inverses of convex sets. **E.g.:** half-planes, exterior of discs.

**More generally:**  $\partial_{\gamma}$  preserves roots in any set "convex with respect to 0".

**Why?** Flipping coefficients/inverting roots maps  $0 \leftrightarrow \infty$ .

Flipping coefficients is a Möbius transformation. What about others?

• If  $\phi$  is a Möbius transform, then  $\phi^{-1} \circ \partial_x \circ \phi$  preserves roots in  $\phi^{-1}(K)$  for any convex K. So what?

### More general polar derivatives via Möbius transformations

Möbius transformation:  $\phi \in SL_2(\mathbb{C})$  and  $\phi : \mathbb{CP}^1 \to \mathbb{CP}^1$ . On polynomials,  $\phi$  acts on roots: For  $p \in \mathbb{C}_h^d[x : y]$ ,

$$\phi^{-1} = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \implies \phi \cdot p = p\left(\phi^{-1} \begin{pmatrix} x \\ y \end{pmatrix}\right) = p(\alpha x + \beta y : \gamma x + \delta y).$$

**Lemma:** Given  $\phi^{-1}$  as above and  $p \in \mathbb{C}_h^d[x : y]$ , we have

$$(\phi^{-1} \circ \partial_x \circ \phi) p = (\alpha \partial_x + \gamma \partial_y) p.$$

**Proof:** 

$$\begin{aligned} (\phi^{-1} \circ \partial_x \circ \phi) p &= \phi^{-1} \cdot \partial_x [p(\alpha x + \beta y : \gamma x + \delta y)] \\ &= \phi^{-1} \cdot [(\alpha \partial_x + \gamma \partial_y) p](\alpha x + \beta y : \gamma x + \delta y) \\ &= (\alpha \partial_x + \gamma \partial_y) p. \end{aligned}$$

# Laguerre's theorem

**Laguerre's theorem:**  $(\alpha \partial_x + \gamma \partial_y)$  preserves roots in circular regions  $C \subset \mathbb{CP}^1$  which do not contain  $(\alpha : \gamma)$ .

Circular regions: Equivalent definitions.

- Möbius transformations of the unit disc.
- Half-spaces in  $\mathbb{R}^3$  intersected with the Riemann sphere ( $\cong \mathbb{CP}^1$ ).

**E.g.:** Discs, exteriors of discs (with  $\infty$ ), half-planes.

**Proof:** By the lemma,  $\alpha \partial_x + \gamma \partial_y = \phi^{-1} \partial_x \phi$  with  $\phi^{-1}(\infty) = (\alpha : \gamma)$ .

- **1** All roots of p are contained in  $C \subset \mathbb{CP}^1$  with  $(\alpha : \gamma) \notin C$ .
- Since  $\phi$  acts on roots, roots of  $\phi \cdot p$  are contained in  $\phi \cdot C \in \mathbb{CP}^1$  with  $\infty = \phi(\alpha : \gamma) \notin \phi \cdot C$ .
- **③** Therefore  $\phi \cdot C \subset \mathbb{C}$  is convex and Gauss-Lucas applies.
- Finally, the inverse action  $\phi^{-1}$  moves roots back to  $C \subset \mathbb{CP}^1$ .

**Fact:** If *p* is real-rooted, then  $(\alpha \partial_x + \gamma \partial_y)p$  is real-rooted for all  $\alpha, \gamma \in \mathbb{R}$ . **Proof:**  $\alpha \partial_x + \gamma \partial_y = \phi^{-1} \partial_x \phi$ , and we can choose  $\phi \in SL_2(\mathbb{R})$ .

**Corollary:** The roots of  $\partial_x p$  and  $\partial_y p$  are interlaced (by Hermite-Kakeya-Obreschkoff theorem).

**Fact:** If  $p \ll q$ , then  $L := \alpha \partial_x + \gamma \partial_y$  implies  $Lp \ll Lq$  for all  $\alpha, \gamma \in \mathbb{R}$ . **Proof:**  $p \ll q$ 

- $\implies p + iq$  has all roots in the closure of upper half-plane  $= \overline{\mathcal{H}_+}$  (by Hermite-Biehler theorem),

**Further:** Real linear preservers of roots in  $\overline{\mathcal{H}_+}$  preserve interlacing.

# Outline



#### Open problems

# A special bilinear form on polynomials

Laguerre: If  $(r_1:s_1),\ldots,(r_d:s_d)\in C$  and  $(\alpha_1:\gamma_1)\not\in C$ , then

$$r(x:y) = (\alpha_1 \partial_x + \gamma_1 \partial_y) \prod_{i=1}^d (s_i x - r_i y)$$
 has all roots in C.

**Induct:** If  $(r_i : s_i) \in C$  and  $(\alpha_i : \gamma_i) \notin C$ , then

$$r(x:y) = \prod_{i=1}^{d'} (\alpha_1 \partial_x + \gamma_1 \partial_y) \prod_{i=1}^{d} (s_i x - r_i y) \quad \text{has all roots in } C.$$

If  $d' \leq d$ , the root conditions guarantee that  $r \not\equiv 0$ .

Candidate for "interesting" bilinear form for  $p, q \in \mathbb{C}_h^d[x : y]$ :

$$\langle p,q
angle^d:=p(\partial_y:-\partial_x)q(x:y)\in\mathbb{C}.$$

Also can be defined for  $\mathbb{C}^{d}[x]$ . In terms of coefficients?

# Grace's apolarity theorem

**Theorem (Grace):** If  $p, q \in \mathbb{C}^d[x]$  and a circular region C are such that the roots of q are all in C and the roots of p are all not in C, then

$$\sum_{k=0}^d \binom{d}{k}^{-1} (-1)^k p_k q_{d-k} \neq 0.$$

**Proof:** If we can show that this bilinear form is equal up to scalar the one from the previous slide, then the previous slide proves the theorem. On the monomial basis, we compute:

$$egin{aligned} &\langle x^{k}y^{d-k}, x^{j}y^{d-j}
angle^{d} &= (-1)^{d-k}\partial_{y}^{k}\partial_{x}^{d-k}x^{j}y^{d-j} \ &= (-1)^{d-k}k!(d-k)!\cdot\delta_{j=d-k} \ &= (-1)^{d}d!\left[\binom{d}{k}^{-1}(-1)^{k}\cdot\delta_{j=d-k}
ight]. \end{aligned}$$

# Grace's theorem: Why do we care? (A preview)

Some bilinear form is non-zero. So what?

Many classical theorems are proven using Grace's theorem. How?

**First:** We can interpret the bilinear form as a choice of isomorphism between  $\mathbb{C}_h^d[x:y]$  and its dual space  $\mathbb{C}_h^d[x:y]^*$  via  $p \longleftrightarrow \langle p, \cdot \rangle^d$ .

**Next:** Induce a map from linear operators on polynomials to polynomials in more variables. Letting  $\mathcal{L}_d$  denote the space of operators,

$$\mathcal{L}_d \cong \mathbb{C}^d_h[x:y] \otimes \mathbb{C}^d_h[x:y]^* \stackrel{\downarrow}{\cong} \mathbb{C}^d_h[x:y] \otimes \mathbb{C}^d_h[x:y] \cong \mathbb{C}^{(d,d)}_h[x:y,z:w].$$

**Denoting this by** Symb<sup>d</sup> :  $\mathcal{L}_d \xrightarrow{\sim} \mathbb{C}_h^{(d,d)}[x : y, z : w]$  gives:

$$T[p](x:y) = \left\langle \mathsf{Symb}^d[T](x:y,z:w), p(z:w) \right\rangle^d$$

**Finally:** Zero location of p and Symb<sup>d</sup>[T] implies non-vanishing of T[p].

# $SL_2(\mathbb{C})$ and the apolarity form

**Fact:** The apolarity form  $\langle p, q \rangle^d$  is **uniquely**  $SL_2(\mathbb{C})$ -invariant:

$$\langle p,q \rangle^d = \langle \phi \cdot p, \phi \cdot q \rangle^d$$
 for all  $p,q,\phi$ .

Makes sense, as the apolarity theorem is  $SL_2(\mathbb{C})$  invariant.

#### A special $SL_2(\mathbb{C})$ -invariant operator D:

$$D\left[p(x:y)q(z:w)\right] := \left(\partial_x \partial_w - \partial_y \partial_z\right)\left[p(x:y)q(z:w)\right].$$

**Corollary(?):**  $D^d[pq] = \langle p, q \rangle^d$  up to scalar. **Proof:** Uniqueness of  $SL_2(\mathbb{C})$ -invariant bilinear form, or easy computation.

**Stronger:** The *D* map preserves **multivariate** root location properties for polynomials p(x : y, z : w). (The *D* map acts on the space  $\mathbb{C}_{h}^{(d,d)}[x : y, z : w]$  of polynomials taking input in  $\mathbb{CP}^{1} \times \mathbb{CP}^{1}$ .)

# An aside: Representation theory of $SL_2(\mathbb{C})$

**Theorem:** The finite dimensional irreducible representations of  $SL_2(\mathbb{C})$  are precisely given by  $V_d := \mathbb{C}_h^d[x : y]$  for all  $d \ge 0$ .

Theorem (Clebsch-Gordon): The tensor square decomposes as

$$\mathbb{C}_{h}^{(d,d)}[x:y,z:w] \cong V_{d} \otimes V_{d} \cong V_{2d} \oplus V_{2d-2} \oplus V_{2d-4} \oplus \cdots \oplus V_{2} \oplus V_{0}.$$

**Fact:** The  $D = \partial_x \partial_w - \partial_y \partial_z$  map acts as  $D : V_d \otimes V_d \rightarrow V_{d-1} \otimes V_{d-1}$ . SL<sub>2</sub>( $\mathbb{C}$ )-invariance implies D simply projects away from the top component in the above decomposition (the  $V_{2d}$  component).

**Other names:** Cayley's  $\Omega$  process, transvectants, Reynolds operator, etc.

**Corollary(?):** The  $V_0$  component picks out the apolarity form. **Proof:** Uniqueness of  $SL_2(\mathbb{C})$ -invariant bilinear form. (The decomposition is also itself a proof of uniqueness.)

# Outline



# Sendov's conjecture

Suppose  $p \in \mathbb{C}[x]$  has all its roots  $\lambda_1(p), \ldots, \lambda_d(p)$  in the closed unit disc. How far away can the critical points be?

**Conjectural worst case:**  $p(x) = x^d - 1 \implies |\lambda_i(p) - \lambda_j(\partial_x p)| = 1.$ 

**Sendov's conjecture:**  $\forall i \exists j \text{ such that } |\lambda_i(p) - \lambda_j(\partial_x p)| \leq 1$ . That is, every zero of p is within distance 1 of a critical point of p.

#### Known facts:

- Known to be true for  $d \leq 8$ .
- For *d* = 3, critical points are the foci of the inscribed ellipse of the convex hull of the zeros.
- If  $|\lambda_i(p)| = 1$ , then the bound is known for that choice of *i*.
- For any particular fixed root  $r_0$ , there is a number  $d_0$  for which  $d \ge d_0$  implies the bound for  $\lambda_i(p) = r_0$ .
- The conjectural worst case is **not** the only local maximum.

# Apolarity theorem for $SU_n(\mathbb{C})$ form

**Grace's theorem:** Non-vanishing for  $SL_2(\mathbb{C})$ -invariant bilinear form.

**Can we extend this beyond**  $SL_2(\mathbb{C})$ ? There isn't quite an  $SL_n(\mathbb{C})$ -invariant form, but there is an  $SU_n(\mathbb{C})$ -invariant form for polynomials  $p \in \mathbb{C}_h^d[x_1 : \cdots : x_n]$  with  $p(x) = \sum_{\mu} p_{\mu} x^{\mu}$ :

$$\langle p,q
angle^d:=\sum_{|\mu|=d} {d \choose \mu}^{-1} p_\mu q_\mu.$$

**Open question:** For what classes of polynomials do we get a Grace-type theorem for this bilinear form?

Alternative form: 
$$\langle p,q\rangle^d = D^d(p(\mathbf{x})q(\mathbf{z}))$$
 for  $D := \sum_{i=1}^n \partial_{x_i}\partial_{z_i}$ .

**Another idea:** Extend to multivariate setting via  $SL_2(\mathbb{C})^n$  (next week).