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Notation

Basic polynomial notation:

C[x ] := v.s. of complex polynomials in one variable.

Cd [x ] := v.s. of polynomials of degree at most d .

For p ∈ Cd [x ], we write p(x) =
∑d

k=0 pkx
k .

monic := the leading coeffcient is 1.

deg(p) := the degree of the polynomial.

λ(p) := the roots/zeros of the polynomial, counting multiplicity.
d
dx = ∂

∂x = ∂x := derivative with respect to x .

Some other notation for this talk:

Cd
h [x : y ] := v.s. of bivariate homogeneous polynomials of degree d .

For p ∈ Cd
h [x : y ], we write p(x : y) =

∑d
k=0 pkx

kyd−k .

CP1 = C ∪ {∞} := complex projective line, or Riemann sphere.

SL2(C) := 2× 2 invertible complex matrices, det = 1.

SU2(C) := subset of unitary matrices in SL2(C).
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The big three

The geometry of polynomials is generally an investigation of the
connections between the various properties of polynomials:

Algebraic, via the roots/zeros of the polynomial.

Combinatorial, via the coefficients of the polynomial.

Analytic, via the evaluations of the polynomial.

Why do we care? We use features of the interplay between these three
to prove facts about mathematical objects which a priori have nothing to
do with polynomials.

Typical method:

1 Encode some object as a polynomial which has some nice properties.

2 Apply operations to that polynomial which preserve those properties.

3 Extract information at the end which relates back to the object.
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The fundamental theorem of algebra

Fundamental theorem of algebra: For all monic p ∈ C[x ] with
deg(p) = d , there exist r1, . . . , rd ∈ C such that

p(x) =
d∑

k=0

pkx
k =

d∏
i=1

(x − ri ).

Corollary: For all p ∈ Cd
h [x : y ], there exist (r1 : s1), . . . , (rd : sd) ∈ CP1

such that

p(x : y) =
d∑

k=0

pkx
kyd−k =

d∏
i=1

(six − riy).

In both cases: We call these points the roots of p, and we will often refer
to these two different definitions interchangeably.

Note: The Cd
h [x : y ] ∼= Cd [x ] case allows roots “at infinity”; consider, e.g.:

p(x) = xk vs p(x : y) = xkyd−k .
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A “converse” to the fundamental theorem

Given r1, . . . , rd ∈ C, there exists a monic polynomial p ∈ Cd [x ] with roots
r1, . . . , rd given by

p(x) =
d∏

i=1

(x − ri ) =
d∑

k=0

(−1)d−ked−k(r1, . . . , rd)xk

where ek(r1, . . . , rn) is the elementary symmetric polynomial.

Important fact: This is a formula for the coefficients in terms of the
roots, but no formula exists in the opposite direction.

Consolation prize: The roots are continuous functions of the coefficients.

Hurwitz’s theorem: A limiting sequence of polynomials with no roots in
an open set U ⊂ C is either identically zero or has no roots in U.
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Real-rooted polynomials

A polynomial p ∈ R[x ] is real-rooted if all of its roots are real. (We also
sometimes consider p ≡ 0 to be real-rooted.)

Lemma: The roots of p ∈ R[x ] are real or come in conjugate pairs.
Proof: p(x) = p(x̄), where x̄ is complex conjugate.

Special continuity of real roots: If p ∈ R[x ] has a simple real root r0,
then real perturbations of p will not move r0 off the real line. (Roots can
only move off the real line in conjugate pairs.)

Corollary: Real perturbations of real-rooted polynomials with simple roots
are still real-rooted.

Corollary: The set of real-rooted polynomials in Rd [x ] is equal to the
closure of its interior (which is non-empty).
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Linear preservers of real-rootedness

Rolle’s theorem for polynomials: Between any two zeros of a
polynomial p ∈ R[x ], there is at least one zero of ∂xp.

Corollary: If p ∈ R[x ] has only real roots, then ∂xp has only real roots.
Proof: Apply Rolle’s theorem to each consecutive pair of roots.

In modern language: The linear operator ∂x preserves real-rootedness.

What about other linear preservers?

1 Shifted derivative: p 7→ p + α∂xp for α ∈ R.

2 Scaling: p 7→ p(rx) for r ∈ R.

3 Inversion: p 7→ xd · p(x−1), when p ∈ Rd [x ].

4 SL2(R)-action: act on the roots by real Möbius transformation.
(This is a linear action! We will discuss this in more detail.)

Note: Last two preservers rely on a choice of degree, which is equivalent
to specifying multiplicity of the root at infinity.
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Newton’s inequalities

Newton’s inequalities: If p ∈ R[x ] is real-rooted and deg(p) = d , then

p0(d
0

) , p1(d
1

) , p2(d
2

) , . . . , pd(d
d

)
is a log-concave sequence (c2k ≥ ck−1ck+1). This condition is called ultra
log-concave (ULC), and if pk > 0, this implies log-concave and unimodal.

Proof: First note that writing p(x) =
∑d

k=0

(d
k

)
p̃kx

k gives

∂xp

d
=

d−1∑
k=0

(
d − 1

k

)
p̃k+1x

k and xd · p(x−1) =
d∑

k=0

(
d

k

)
p̃d−kx

k ,

and both preserve real-rootedness. Apply these operators to reduce to

2∑
k=0

(
2

k

)
p̃k+jx

k

for any j . Real-rootedness implies 0 ≤ b2 − 4ac = 4(p̃2j+1 − p̃j p̃j+2).
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A little more on the proof of Newton’s inequalities

How exactly do we reduce to quadratics?
Let’s consider everything in terms of p ∈ Rd

h [x : y ].

First: ∂x is the “same” in all of R[x ], Rd [x ], and Rd
h [x : y ].

How does ∂y for p =
∑

k pkx
kyd−k translate to p ∈ Rd [x ]?

1 First flip coefficients: p 7→ xd · p(x−1).

2 Now apply usual derivative: p 7→ ∂xp.

3 Finally, flip coefficients back with new degree: p 7→ xd−1 · p(x−1).

So ∂y preserves real-rootedness.
Further, we can now easily reduce to quadratics in Rd

h [x : y ] via:

2

d!
∂jx∂

d−2−j
y

[
d∑

k=0

(
d

k

)
p̃kx

kyd−k

]
=

2∑
k=0

(
2

k

)
p̃k+jx

ky2−k .
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Some “converses” to Newton’s inequalities

Kurtz ’92: For p(x) =
∑d

k=0 pkx
k , if we have

p2k ≥ 4pk−1pk+1 for all valid k ,

then p is real-rooted. (Discriminant condition when d = 2.)

An actual converse: For p(x : y) ∈ Rd
h [x : y ] with ≥ 0 coefficients, the

following are equivalent.

1 The coefficients of p form an ultra log-concave sequence.

2 ∂ ix∂
j
yp(x : y) is log-concave as a bivariate function on R2

+ (the
positive orthant) for all valid i , j .

3 ∂ ix∂
d−i−2
y p(x : y) is a real-rooted quadratic for all valid i , and the

coefficient sequence of p has no “internal zeros”.

Corollary: Real-rooted polynomials are log-concave in the positive orthant.

Foreshadowing: Proof will go via Lorentzian polynomials.
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The method, revisited

The method:
1 Encode some object as a polynomial which has some nice properties.

Real-rootedness, ULC coefficients, log-concavity, etc.

2 Apply operations to that polynomial which preserve those properties.

Derivatives, SL2(R), others?

3 Extract information at the end which relates back to the object.

Coefficients, evaluations, log-concavity, capacity, etc.

Classic examples:

Graph polynomials where coefficients count things (matching
polynomial, spanning tree polynomial).

Polynomials where evaluations count things (chromatic polynomial,
Ehrhart polynomial).

Other generating functions (Schur polynomials, contingency tables).
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Interlacing roots

Given real-rooted polynomials p, q ∈ R[x ] with positive leading
coefficients, we say that p interlaces q and write p � q if

· · · ≤ λ2(p) ≤ λ2(q) ≤ λ1(p) ≤ λ1(q),

where λn(p) ≤ · · · ≤ λ1(p) are the ordered roots of p. This is a closed
property, and implies deg(q)− deg(p) ∈ {0, 1}. If all inequalities are
strict, we say that p strictly interlaces q. This is the interior.

Key picture is the graph of q(x)
p(x) . E.g. (x+7)(x+5.8)(x+3)(x+1.5)

(x+8)(x+6)(x+5)(x+2) :
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Characterization of interlacing polynomials

Let p, q ∈ Rd [x ] be monic with d simple roots such that p, q don’t share
any roots. (True more generally, but this is simpler.)

Theorem (Hermite-Kakeya-Obreschkoff): The following are equivalent.

p � q (that is, · · · < λ2(p) < λ2(q) < λ1(p) < λ1(q)).

sgn(p(λi (q))) = (−1)i−1 for all i .

ap + bq is real-rooted for all a, b ∈ R.

W (p, q) = p · ∂xq − q · ∂xp ≥ 0 on R.

Corollary: p 7→ p + α∂xp preserves real-rootedness for α ∈ R.
Proof: ∂xp � p by Rolle’s theorem.

Corollary: If p � q and p � r , then p � aq + br for all a, b ≥ 0.
(The polynomials q and r have a common interlacer.)
Proof: E.g., bilinearity of Wronskian W (p, q).
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Proof of characterization

Theorem: The following are equivalent.

p � q.

ap + bq is real-rooted for all a, b ∈ R.

W (p, q) = p · ∂xq − q · ∂xp ≥ 0 on R.

Proof by picture: ap + bq = 0 ⇐⇒ q
p = − a

b .

∂x

[
q

p

]
=

p · ∂xq − q · ∂xp
p2

=
W (p, q)

p2
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The Hermite-Biehler theorem

Theorem (Hermite-Biehler): Given monic p, q ∈ Rd [x ] with d roots, we
have p � q strictly iff p + iq has all its roots in the upper half-plane.
Proof by picture: Consider winding number of

R

Along real line: (Re, Im) = . . . , (−,+), (−,−), (+,−), (+,+) = d
2 loops.

Along arc: p + iq ≈ (1 + i)xd =⇒ half of circle gives half of d loops.

Corollary: If p has simple real roots, then ∂xp + ip has all its roots in the
upper half-plane.
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Classic example: matchings of a graph

Given a graph G = (V ,E ), a k-matching M of G is a selection of k
edges for which no two edges touch the same vertex.

Matching polynomial: MG (x) :=

b|V |/2c∑
k=0

(−1)kmkx
|V |−2k .
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Classic example: matchings of a graph

Matching polynomial: MG (x) :=

b|V |/2c∑
k=0

(−1)kmkx
|V |−2k .

Classic theorem (Heilmann-Lieb ’72): For any graph G , the matching
polynomial has only real roots.

Corollary: The sequence mk is ultra log-concave (log-concave, unimodal).
Proof: MG (x) real-rooted iff µG (x) :=

∑
k mkx

k is real-rooted. Why?

1 MG (x) = x |V | ·
b|V |/2c∑
k=0

mk · (−x−2)k = x |V | · µG (−x−2).

2 µG (x) =

b|V |/2c∏
i=1

(x + ri ) ⇐⇒ MG (x) = x |V | mod 2

b|V |/2c∏
i=1

(rix
2 − 1).

3 Roots of MG (x) come in ± pairs (except at x = 0).
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Proof of the Heilmann-Lieb theorem

Matching polynomial: MG (x) :=
∑
M∈G

x |V |−2|M| =

b|V |/2c∑
k=0

mkx
|V |−2k .

Proof: Induction on interlacing relation MG\v � MG .

1 Recurrence relation for MG (x) based on subgraphs, for any v ∈ V :

MG (x) = x ·MG\v (x)−
∑
u∼v

MG\uv (x).

2 Divide through by MG\v :
MG (x)

MG\v (x)
= x −

∑
u∼v

MG\uv (x)

MG\v (x)
.

3 ∂x

x −∑
u∼v

 ≥ 0 =⇒ MG (x)

MG\v (x)
= .
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The Gauss-Lucas theorem

Theorem (Gauss-Lucas): If the roots of p ∈ C[x ] are contained in a
convex set K ⊂ C, then the roots of ∂xp are also contained in K .
Proof: By the product rule for ∂x , if ∂xp(r) = 0 then

0 =
∂xp

p
(r) =

∑d
i=1

∏
j 6=i (r − λj(p))∏d

i=1(r − λi (p))
=

d∑
i=1

1

r − λi (p)
=

d∑
i=1

r − λi (p)

|r − λi (p)|2
.

Rearranging then gives

d∑
i=1

r

|r − λi (p)|2
=

d∑
i=1

λi (p)

|r − λi (p)|2
=⇒ r =

d∑
i=1

1
|r−λi (p)|2∑d
j=1

1
|r−λj (p)|2

· λi (p).

This is a convex combination of the λi (p).

Conceptual proof: 0 =
∑

i
r−λi (p)
|r−λi (p)|2

⇐⇒ equillibria of electric potential.

Corollary: ∂x preserves real-, half-plane-, or disc-rooted polynomials.
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The polar derivative

Recall: Both ∂x and ∂y for p ∈ Rd
h [x : y ] preserve real-rootedness.

Gauss-Lucas: ∂x preserves other sets.

What about ∂y?

∂y = (flip coeff.)−1 ◦ ∂x ◦ (flip coeff.)

Since flipping coeff. ⇐⇒ inverting roots, ∂y preserves roots in sets which
are inverses of convex sets. E.g.: half-planes, exterior of discs.

More generally: ∂y preserves roots in any set “convex with respect to 0”.

Why? Flipping coefficients/inverting roots maps 0←→∞.

Flipping coefficients is a Möbius transformation. What about others?

If φ is a Möbius transform, then φ−1 ◦ ∂x ◦ φ preserves roots in
φ−1(K ) for any convex K . So what?
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More general polar derivatives via Möbius transformations

Möbius transformation: φ ∈ SL2(C) and φ : CP1 → CP1.
On polynomials, φ acts on roots: For p ∈ Cd

h [x : y ],

φ−1 =

[
α β
γ δ

]
=⇒ φ · p = p

(
φ−1

(
x

y

))
= p(αx + βy : γx + δy).

Lemma: Given φ−1 as above and p ∈ Cd
h [x : y ], we have

(φ−1 ◦ ∂x ◦ φ)p = (α∂x + γ∂y )p.

Proof:

(φ−1 ◦ ∂x ◦ φ)p = φ−1 · ∂x [p(αx + βy : γx + δy)]

= φ−1 · [(α∂x + γ∂y )p](αx + βy : γx + δy)

= (α∂x + γ∂y )p.
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Laguerre’s theorem

Laguerre’s theorem: (α∂x + γ∂y ) preserves roots in circular regions
C ⊂ CP1 which do not contain (α : γ).

Circular regions: Equivalent definitions.

Möbius transformations of the unit disc.

Half-spaces in R3 intersected with the Riemann sphere (∼= CP1).

E.g.: Discs, exteriors of discs (with ∞), half-planes.

Proof: By the lemma, α∂x + γ∂y = φ−1∂xφ with φ−1(∞) = (α : γ).

1 All roots of p are contained in C ⊂ CP1 with (α : γ) 6∈ C .

2 Since φ acts on roots, roots of φ · p are contained in φ · C ∈ CP1 with
∞ = φ(α : γ) 6∈ φ · C .

3 Therefore φ · C ⊂ C is convex and Gauss-Lucas applies.

4 Finally, the inverse action φ−1 moves roots back to C ⊂ CP1.
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Polar derivatives and real-rooted polynomials

Fact: If p is real-rooted, then (α∂x + γ∂y )p is real-rooted for all α, γ ∈ R.
Proof: α∂x + γ∂y = φ−1∂xφ, and we can choose φ ∈ SL2(R).

Corollary: The roots of ∂xp and ∂yp are interlaced (by
Hermite-Kakeya-Obreschkoff theorem).

Fact: If p � q, then L := α∂x + γ∂y implies Lp � Lq for all α, γ ∈ R.
Proof: p � q

1 =⇒ p + iq has all roots in the closure of upper half-plane = H+ (by
Hermite-Biehler theorem),

2 =⇒ L(p + iq) = Lp + iLq has all roots in H+,

3 =⇒ Lp � Lq (by Hermite-Biehler again).

Further: Real linear preservers of roots in H+ preserve interlacing.
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A special bilinear form on polynomials

Laguerre: If (r1 : s1), . . . , (rd : sd) ∈ C and (α1 : γ1) 6∈ C , then

r(x : y) = (α1∂x + γ1∂y )
d∏

i=1

(six − riy) has all roots in C .

Induct: If (ri : si ) ∈ C and (αi : γi ) 6∈ C , then

r(x : y) =
d ′∏
i=1

(α1∂x + γ1∂y )
d∏

i=1

(six − riy) has all roots in C .

If d ′ ≤ d , the root conditions guarantee that r 6≡ 0.

Candidate for “interesting” bilinear form for p, q ∈ Cd
h [x : y ]:

〈p, q〉d := p(∂y : −∂x)q(x : y) ∈ C.

Also can be defined for Cd [x ]. In terms of coefficients?
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Grace’s apolarity theorem

Theorem (Grace): If p, q ∈ Cd [x ] and a circular region C are such that
the roots of q are all in C and the roots of p are all not in C , then

d∑
k=0

(
d

k

)−1
(−1)kpkqd−k 6= 0.

Proof: If we can show that this bilinear form is equal up to scalar the one
from the previous slide, then the previous slide proves the theorem. On the
monomial basis, we compute:

〈xkyd−k , x jyd−j〉d = (−1)d−k∂ky ∂
d−k
x x jyd−j

= (−1)d−kk!(d − k)! · δj=d−k

= (−1)dd!

[(
d

k

)−1
(−1)k · δj=d−k

]
.
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Grace’s theorem: Why do we care? (A preview)

Some bilinear form is non-zero. So what?

Many classical theorems are proven using Grace’s theorem. How?

First: We can interpret the bilinear form as a choice of isomorphism
between Cd

h [x : y ] and its dual space Cd
h [x : y ]∗ via p ←→ 〈p, ·〉d .

Next: Induce a map from linear operators on polynomials to polynomials
in more variables. Letting Ld denote the space of operators,

Ld ∼= Cd
h [x : y ]⊗ Cd

h [x : y ]∗
↓∼= Cd

h [x : y ]⊗ Cd
h [x : y ] ∼= C(d ,d)

h [x : y , z : w ].

Denoting this by Symbd : Ld
∼→ C(d ,d)

h [x : y , z : w ] gives:

T [p](x : y) =
〈

Symbd [T ](x : y , z : w), p(z : w)
〉d
.

Finally: Zero location of p and Symbd [T ] implies non-vanishing of T [p].
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SL2(C) and the apolarity form

Fact: The apolarity form 〈p, q〉d is uniquely SL2(C)-invariant:

〈p, q〉d = 〈φ · p, φ · q〉d for all p, q, φ.

Makes sense, as the apolarity theorem is SL2(C) invariant.

A special SL2(C)-invariant operator D:

D [p(x : y)q(z : w)] := (∂x∂w − ∂y∂z) [p(x : y)q(z : w)] .

Corollary(?): Dd [pq] = 〈p, q〉d up to scalar.
Proof: Uniqueness of SL2(C)-invariant bilinear form, or easy computation.

Stronger: The D map preserves multivariate root location properties for
polynomials p(x : y , z : w). (The D map acts on the space

C(d ,d)
h [x : y , z : w ] of polynomials taking input in CP1 × CP1.)
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An aside: Representation theory of SL2(C)

Theorem: The finite dimensional irreducible representations of SL2(C) are
precisely given by Vd := Cd

h [x : y ] for all d ≥ 0.

Theorem (Clebsch-Gordon): The tensor square decomposes as

C(d ,d)
h [x : y , z : w ] ∼= Vd ⊗ Vd

∼= V2d ⊕ V2d−2 ⊕ V2d−4 ⊕ · · · ⊕ V2 ⊕ V0.

Fact: The D = ∂x∂w − ∂y∂z map acts as D : Vd ⊗ Vd → Vd−1 ⊗ Vd−1.
SL2(C)-invariance implies D simply projects away from the top component
in the above decomposition (the V2d component).

Other names: Cayley’s Ω process, transvectants, Reynolds operator, etc.

Corollary(?): The V0 component picks out the apolarity form.
Proof: Uniqueness of SL2(C)-invariant bilinear form. (The decomposition
is also itself a proof of uniqueness.)
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Outline

1 The big three: roots, coefficients, evaluations
Roots and coefficients
Real-rooted polynomials
Coefficients, evaluations, and log-concavity

2 Interlacing polynomials
Interlacing via pictures
Classic example: matchings of a graph

3 The Gauss-Lucas theorem and polar derivatives
The derivative and complex roots
Laguerre’s theorem

4 The granddaddy of ’em all: Grace’s theorem
The apolarity bilinear form
Why we care: a preview of next week
SL2(C)-invariance

5 Open problems
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Sendov’s conjecture

Suppose p ∈ C[x ] has all its roots λ1(p), . . . , λd(p) in the closed unit disc.
How far away can the critical points be?

Conjectural worst case: p(x) = xd − 1 =⇒ |λi (p)− λj(∂xp)| = 1.

Sendov’s conjecture: ∀i ∃j such that |λi (p)− λj(∂xp)| ≤ 1. That is,
every zero of p is within distance 1 of a critical point of p.

Known facts:

Known to be true for d ≤ 8.

For d = 3, critical points are the foci of the inscribed ellipse of the
convex hull of the zeros.

If |λi (p)| = 1, then the bound is known for that choice of i .

For any particular fixed root r0, there is a number d0 for which
d ≥ d0 implies the bound for λi (p) = r0.

The conjectural worst case is not the only local maximum.
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Apolarity theorem for SUn(C) form

Grace’s theorem: Non-vanishing for SL2(C)-invariant bilinear form.

Can we extend this beyond SL2(C)? There isn’t quite an
SLn(C)-invariant form, but there is an SUn(C)-invariant form for
polynomials p ∈ Cd

h [x1 : · · · : xn] with p(x) =
∑

µ pµxµ:

〈p, q〉d :=
∑
|µ|=d

(
d

µ

)−1
pµqµ.

Open question: For what classes of polynomials do we get a Grace-type
theorem for this bilinear form?

Alternative form: 〈p, q〉d = Dd(p(x)q(z)) for D :=
n∑

i=1

∂xi∂zi .

Another idea: Extend to multivariate setting via SL2(C)n (next week).

Jonathan Leake (TU Berlin) Univariate Polynomials Winter 2020-2021 36 / 36


	The big three: roots, coefficients, evaluations
	Roots and coefficients
	Real-rooted polynomials
	Coefficients, evaluations, and log-concavity

	Interlacing polynomials
	Interlacing via pictures
	Classic example: matchings of a graph

	The Gauss-Lucas theorem and polar derivatives
	The derivative and complex roots
	Laguerre's theorem

	The granddaddy of 'em all: Grace's theorem
	The apolarity bilinear form
	Why we care: a preview of next week
	`39`42`"613A``45`47`"603ASL2(C)-invariance

	Open problems

