Univariate Polynomials
 Polynomial Capacity: Theory, Applications, Generalizations

Jonathan Leake
Technische Universität Berlin

November 5th, 2020

Notation

Basic polynomial notation:

- $\mathbb{C}[x]:=$ v.s. of complex polynomials in one variable.
- $\mathbb{C}^{d}[x]:=\mathrm{v}$.s. of polynomials of degree at most d.
- For $p \in \mathbb{C}^{d}[x]$, we write $p(x)=\sum_{k=0}^{d} p_{k} x^{k}$.
- monic $:=$ the leading coeffcient is 1 .
- $\operatorname{deg}(p):=$ the degree of the polynomial.
- $\lambda(p):=$ the roots/zeros of the polynomial, counting multiplicity.
- $\frac{d}{d x}=\frac{\partial}{\partial x}=\partial_{x}:=$ derivative with respect to x.

Some other notation for this talk:

- $\mathbb{C}_{h}^{d}[x: y]:=$ v.s. of bivariate homogeneous polynomials of degree d.
- For $p \in \mathbb{C}_{h}^{d}[x: y]$, we write $p(x: y)=\sum_{k=0}^{d} p_{k} x^{k} y^{d-k}$.
- $\mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\}:=$ complex projective line, or Riemann sphere.
- $\mathrm{SL}_{2}(\mathbb{C}):=2 \times 2$ invertible complex matrices, det $=1$.
- $\mathrm{SU}_{2}(\mathbb{C}):=$ subset of unitary matrices in $\mathrm{SL}_{2}(\mathbb{C})$.

Outline

(1) The big three: roots, coefficients, evaluations

- Roots and coefficients
- Real-rooted polynomials
- Coefficients, evaluations, and log-concavity
(2) Interlacing polynomials
- Interlacing via pictures
- Classic example: matchings of a graph
(3) The Gauss-Lucas theorem and polar derivatives
- The derivative and complex roots
- Laguerre's theorem
(4) The granddaddy of 'em all: Grace's theorem
- The apolarity bilinear form
- Why we care: a preview of next week
- $\mathrm{SL}_{2}(\mathbb{C})$-invariance
(5) Open problems

Outline

(1) The big three: roots, coefficients, evaluations

- Roots and coefficients
- Real-rooted polynomials
- Coefficients, evaluations, and log-concavity
(2) Interlacing polynomials
- Interlacing via pictures
- Classic example: matchings of a graph
(3) The Gauss-Lucas theorem and polar derivatives
- The derivative and complex roots
- Laguerre's theorem
(4) The granddaddy of 'em all: Grace's theorem
- The apolarity bilinear form
- Why we care: a preview of next week
- $\mathrm{SL}_{2}(\mathbb{C})$-invariance
(5) Open problems

The big three

The geometry of polynomials is generally an investigation of the connections between the various properties of polynomials:

- Algebraic, via the roots/zeros of the polynomial.
- Combinatorial, via the coefficients of the polynomial.
- Analytic, via the evaluations of the polynomial.

Why do we care? We use features of the interplay between these three to prove facts about mathematical objects which a priori have nothing to do with polynomials.

Typical method:

(1) Encode some object as a polynomial which has some nice properties.
(2) Apply operations to that polynomial which preserve those properties.
(3) Extract information at the end which relates back to the object.

The fundamental theorem of algebra

Fundamental theorem of algebra: For all monic $p \in \mathbb{C}[x]$ with $\operatorname{deg}(p)=d$, there exist $r_{1}, \ldots, r_{d} \in \mathbb{C}$ such that

$$
p(x)=\sum_{k=0}^{d} p_{k} x^{k}=\prod_{i=1}^{d}\left(x-r_{i}\right)
$$

Corollary: For all $p \in \mathbb{C}_{h}^{d}[x: y]$, there exist $\left(r_{1}: s_{1}\right), \ldots,\left(r_{d}: s_{d}\right) \in \mathbb{C P}^{1}$ such that

$$
p(x: y)=\sum_{k=0}^{d} p_{k} x^{k} y^{d-k}=\prod_{i=1}^{d}\left(s_{i} x-r_{i} y\right)
$$

In both cases: We call these points the roots of p, and we will often refer to these two different definitions interchangeably.

Note: The $\mathbb{C}_{h}^{d}[x: y] \cong \mathbb{C}^{d}[x]$ case allows roots "at infinity"; consider, e.g.:

$$
p(x)=x^{k} \quad \text { vs } \quad p(x: y)=x^{k} y^{d-k}
$$

A "converse" to the fundamental theorem

Given $r_{1}, \ldots, r_{d} \in \mathbb{C}$, there exists a monic polynomial $p \in \mathbb{C}^{d}[x]$ with roots r_{1}, \ldots, r_{d} given by

$$
p(x)=\prod_{i=1}^{d}\left(x-r_{i}\right)=\sum_{k=0}^{d}(-1)^{d-k} e_{d-k}\left(r_{1}, \ldots, r_{d}\right) x^{k}
$$

where $e_{k}\left(r_{1}, \ldots, r_{n}\right)$ is the elementary symmetric polynomial.
Important fact: This is a formula for the coefficients in terms of the roots, but no formula exists in the opposite direction.

Consolation prize: The roots are continuous functions of the coefficients.
Hurwitz's theorem: A limiting sequence of polynomials with no roots in an open set $U \subset \mathbb{C}$ is either identically zero or has no roots in U.

Real-rooted polynomials

A polynomial $p \in \mathbb{R}[x]$ is real-rooted if all of its roots are real. (We also sometimes consider $p \equiv 0$ to be real-rooted.)

Lemma: The roots of $p \in \mathbb{R}[x]$ are real or come in conjugate pairs. Proof: $p(x)=\overline{p(\bar{x})}$, where \bar{x} is complex conjugate.

Special continuity of real roots: If $p \in \mathbb{R}[x]$ has a simple real root r_{0}, then real perturbations of p will not move r_{0} off the real line. (Roots can only move off the real line in conjugate pairs.)

Corollary: Real perturbations of real-rooted polynomials with simple roots are still real-rooted.

Corollary: The set of real-rooted polynomials in $\mathbb{R}^{d}[x]$ is equal to the closure of its interior (which is non-empty).

Linear preservers of real-rootedness

Rolle's theorem for polynomials: Between any two zeros of a polynomial $p \in \mathbb{R}[x]$, there is at least one zero of $\partial_{x} p$.

Corollary: If $p \in \mathbb{R}[x]$ has only real roots, then $\partial_{x} p$ has only real roots. Proof: Apply Rolle's theorem to each consecutive pair of roots.

In modern language: The linear operator ∂_{x} preserves real-rootedness.
What about other linear preservers?
(1) Shifted derivative: $p \mapsto p+\alpha \partial_{x} p$ for $\alpha \in \mathbb{R}$.
(2) Scaling: $p \mapsto p(r x)$ for $r \in \mathbb{R}$.
(3) Inversion: $p \mapsto x^{d} \cdot p\left(x^{-1}\right)$, when $p \in \mathbb{R}^{d}[x]$.
(9) $\mathrm{SL}_{2}(\mathbb{R})$-action: act on the roots by real Möbius transformation.
(This is a linear action! We will discuss this in more detail.)
Note: Last two preservers rely on a choice of degree, which is equivalent to specifying multiplicity of the root at infinity.

Newton's inequalities

Newton's inequalities: If $p \in \mathbb{R}[x]$ is real-rooted and $\operatorname{deg}(p)=d$, then

$$
\frac{p_{0}}{\binom{d}{0}}, \frac{p_{1}}{\binom{d}{1}}, \frac{p_{2}}{\binom{d}{2}}, \ldots, \frac{p_{d}}{\binom{d}{d}}
$$

is a log-concave sequence $\left(c_{k}^{2} \geq c_{k-1} c_{k+1}\right)$. This condition is called ultra log-concave (ULC), and if $p_{k}>0$, this implies log-concave and unimodal.

Proof: First note that writing $p(x)=\sum_{k=0}^{d}\binom{d}{k} \tilde{p}_{k} x^{k}$ gives

$$
\frac{\partial_{x} p}{d}=\sum_{k=0}^{d-1}\binom{d-1}{k} \tilde{p}_{k+1} x^{k} \quad \text { and } \quad x^{d} \cdot p\left(x^{-1}\right)=\sum_{k=0}^{d}\binom{d}{k} \tilde{p}_{d-k} x^{k}
$$

and both preserve real-rootedness. Apply these operators to reduce to

$$
\sum_{k=0}^{2}\binom{2}{k} \tilde{p}_{k+j} x^{k}
$$

for any j. Real-rootedness implies $0 \leq b^{2}-4 a c=4\left(\tilde{p}_{j+1}^{2}-\tilde{p}_{j} \tilde{p}_{j+2}\right)$.

A little more on the proof of Newton's inequalities

How exactly do we reduce to quadratics?
Let's consider everything in terms of $p \in \mathbb{R}_{h}^{d}[x: y]$.
First: ∂_{x} is the "same" in all of $\mathbb{R}[x], \mathbb{R}^{d}[x]$, and $\mathbb{R}_{h}^{d}[x: y]$.
How does ∂_{y} for $p=\sum_{k} p_{k} x^{k} y^{d-k}$ translate to $p \in \mathbb{R}^{d}[x]$?
(1) First flip coefficients: $p \mapsto x^{d} \cdot p\left(x^{-1}\right)$.
(2) Now apply usual derivative: $p \mapsto \partial_{x} p$.
(3) Finally, flip coefficients back with new degree: $p \mapsto x^{d-1} \cdot p\left(x^{-1}\right)$.

So ∂_{y} preserves real-rootedness.
Further, we can now easily reduce to quadratics in $\mathbb{R}_{h}^{d}[x: y]$ via:

$$
\frac{2}{d!} \partial_{x}^{j} \partial_{y}^{d-2-j}\left[\sum_{k=0}^{d}\binom{d}{k} \tilde{p}_{k} x^{k} y^{d-k}\right]=\sum_{k=0}^{2}\binom{2}{k} \tilde{p}_{k+j} x^{k} y^{2-k}
$$

Some "converses" to Newton's inequalities

Kurtz '92: For $p(x)=\sum_{k=0}^{d} p_{k} x^{k}$, if we have

$$
p_{k}^{2} \geq 4 p_{k-1} p_{k+1} \quad \text { for all valid } k
$$

then p is real-rooted. (Discriminant condition when $d=2$.)
An actual converse: For $p(x: y) \in \mathbb{R}_{h}^{d}[x: y]$ with ≥ 0 coefficients, the following are equivalent.
(1) The coefficients of p form an ultra log-concave sequence.
(2) $\partial_{x}^{i} \partial_{y}^{j} p(x: y)$ is log-concave as a bivariate function on \mathbb{R}_{+}^{2} (the positive orthant) for all valid i, j.
(3) $\partial_{x}^{i} \partial_{y}^{d-i-2} p(x: y)$ is a real-rooted quadratic for all valid i, and the coefficient sequence of p has no "internal zeros".
Corollary: Real-rooted polynomials are log-concave in the positive orthant.
Foreshadowing: Proof will go via Lorentzian polynomials.

The method, revisited

The method:

(1) Encode some object as a polynomial which has some nice properties.

- Real-rootedness, ULC coefficients, log-concavity, etc.
(2) Apply operations to that polynomial which preserve those properties.
- Derivatives, $\mathrm{SL}_{2}(\mathbb{R})$, others?
(3) Extract information at the end which relates back to the object.
- Coefficients, evaluations, log-concavity, capacity, etc.

Classic examples:

- Graph polynomials where coefficients count things (matching polynomial, spanning tree polynomial).
- Polynomials where evaluations count things (chromatic polynomial, Ehrhart polynomial).
- Other generating functions (Schur polynomials, contingency tables).

Outline

(1) The big three: roots, coefficients, evaluations

- Roots and coefficients
- Real-rooted polynomials
- Coefficients, evaluations, and log-concavity
(2) Interlacing polynomials
- Interlacing via pictures
- Classic example: matchings of a graph
(3) The Gauss-Lucas theorem and polar derivatives
- The derivative and complex roots
- Laguerre's theorem
(4) The granddaddy of 'em all: Grace's theorem
- The apolarity bilinear form
- Why we care: a preview of next week
- $S_{2}(\mathbb{C})$-invariance
(5) Open problems

Interlacing roots

Given real-rooted polynomials $p, q \in \mathbb{R}[x]$ with positive leading coefficients, we say that p interlaces q and write $p \ll q$ if

$$
\cdots \leq \lambda_{2}(p) \leq \lambda_{2}(q) \leq \lambda_{1}(p) \leq \lambda_{1}(q)
$$

where $\lambda_{n}(p) \leq \cdots \leq \lambda_{1}(p)$ are the ordered roots of p. This is a closed property, and implies $\operatorname{deg}(q)-\operatorname{deg}(p) \in\{0,1\}$. If all inequalities are strict, we say that p strictly interlaces q. This is the interior.

Key picture is the graph of $\frac{q(x)}{p(x)}$. E.g. $\frac{(x+7)(x+5.8)(x+3)(x+1.5)}{(x+8)(x+6)(x+5)(x+2)}$:

Characterization of interlacing polynomials

Let $p, q \in \mathbb{R}^{d}[x]$ be monic with d simple roots such that p, q don't share any roots. (True more generally, but this is simpler.)

Theorem (Hermite-Kakeya-Obreschkoff): The following are equivalent.

- $p \ll q$ (that is, $\left.\cdots<\lambda_{2}(p)<\lambda_{2}(q)<\lambda_{1}(p)<\lambda_{1}(q)\right)$.
- $\operatorname{sgn}\left(p\left(\lambda_{i}(q)\right)\right)=(-1)^{i-1}$ for all i.
- $a p+b q$ is real-rooted for all $a, b \in \mathbb{R}$.
- $W(p, q)=p \cdot \partial_{x} q-q \cdot \partial_{x} p \geq 0$ on \mathbb{R}.

Corollary: $p \mapsto p+\alpha \partial_{x} p$ preserves real-rootedness for $\alpha \in \mathbb{R}$. Proof: $\partial_{x} p \ll p$ by Rolle's theorem.

Corollary: If $p \ll q$ and $p \ll r$, then $p \ll a q+b r$ for all $a, b \geq 0$. (The polynomials q and r have a common interlacer.)
Proof: E.g., bilinearity of Wronskian $W(p, q)$.

Proof of characterization

Theorem: The following are equivalent.

- $p \ll q$.
- $a p+b q$ is real-rooted for all $a, b \in \mathbb{R}$.
- $W(p, q)=p \cdot \partial_{x} q-q \cdot \partial_{x} p \geq 0$ on \mathbb{R}.

Proof by picture: $a p+b q=0 \Longleftrightarrow \frac{q}{p}=-\frac{a}{b}$.

$$
\partial_{x}\left[\frac{q}{p}\right]=\frac{p \cdot \partial_{x} q-q \cdot \partial_{x} p}{p^{2}}=\frac{W(p, q)}{p^{2}}
$$

The Hermite-Biehler theorem

Theorem (Hermite-Biehler): Given monic $p, q \in \mathbb{R}^{d}[x]$ with d roots, we have $p \ll q$ strictly iff $p+i q$ has all its roots in the upper half-plane. Proof by picture: Consider winding number of

Along real line: $(\operatorname{Re}, \operatorname{Im})=\ldots,(-,+),(-,-),(+,-),(+,+)=\frac{d}{2}$ loops. Along arc: $p+i q \approx(1+i) x^{d} \Longrightarrow$ half of circle gives half of d loops.

Corollary: If p has simple real roots, then $\partial_{x} p+i p$ has all its roots in the upper half-plane.

Classic example: matchings of a graph

Given a graph $G=(V, E)$, a k-matching M of G is a selection of k edges for which no two edges touch the same vertex.

Matching polynomial: $M_{G}(x):=\sum_{k=0}^{\lfloor|V| / 2\rfloor}(-1)^{k} m_{k} x^{|V|-2 k}$.

Classic example: matchings of a graph

Matching polynomial: $M_{G}(x):=\sum_{k=0}^{\lfloor|V| / 2\rfloor}(-1)^{k} m_{k} x^{|V|-2 k}$.
Classic theorem (Heilmann-Lieb '72): For any graph G, the matching polynomial has only real roots.

Corollary: The sequence m_{k} is ultra log-concave (log-concave, unimodal). Proof: $M_{G}(x)$ real-rooted iff $\mu_{G}(x):=\sum_{k} m_{k} x^{k}$ is real-rooted. Why?
(1) $M_{G}(x)=x^{|V|} \cdot \sum_{k=0}^{\lfloor|V| / 2\rfloor} m_{k} \cdot\left(-x^{-2}\right)^{k}=x^{|V|} \cdot \mu_{G}\left(-x^{-2}\right)$.
(2) $\mu_{G}(x)=\prod_{i=1}^{\lfloor|V| / 2\rfloor}\left(x+r_{i}\right) \Longleftrightarrow M_{G}(x)=x^{|V| \bmod 2} \prod_{i=1}^{\lfloor|V| / 2\rfloor}\left(r_{i} x^{2}-1\right)$.
(3) Roots of $M_{G}(x)$ come in \pm pairs (except at $x=0$).

Proof of the Heilmann-Lieb theorem

Matching polynomial: $M_{G}(x):=\sum_{M \in G} x^{|V|-2|M|}=\sum_{k=0}^{\lfloor|V| / 2\rfloor} m_{k} x^{|V|-2 k}$.
Proof: Induction on interlacing relation $M_{G \backslash v} \ll M_{G}$.
(1) Recurrence relation for $M_{G}(x)$ based on subgraphs, for any $v \in V$:

$$
M_{G}(x)=x \cdot M_{G \backslash v}(x)-\sum_{u \sim v} M_{G \backslash u v}(x) .
$$

(2) Divide through by $M_{G \backslash v}: \frac{M_{G}(x)}{M_{G \backslash v}(x)}=x-\sum_{u \sim v} \frac{M_{G \backslash u v}(x)}{M_{G \backslash v}(x)}$.
(3) $\partial_{x}\left[x-\sum_{u \sim v} \underset{\|}{\|}\left\|\geq 0 \Longrightarrow \frac{M_{G}(x)}{M_{G \backslash v}(x)}=\rightarrow\right\| / \|\right.$.

Outline

(1) The big three: roots, coefficients, evaluations

- Roots and coefficients
- Real-rooted polynomials
- Coefficients, evaluations, and log-concavity
(2) Interlacing polynomials
- Interlacing via pictures
- Classic example: matchings of a graph
(3) The Gauss-Lucas theorem and polar derivatives
- The derivative and complex roots
- Laguerre's theorem

4) The granddaddy of 'em all: Grace's theorem

- The apolarity bilinear form
- Why we care: a preview of next week
- $S_{2}(\mathbb{C})$-invariance
(5) Open problems

The Gauss-Lucas theorem

Theorem (Gauss-Lucas): If the roots of $p \in \mathbb{C}[x]$ are contained in a convex set $K \subset \mathbb{C}$, then the roots of $\partial_{x} p$ are also contained in K.
Proof: By the product rule for ∂_{x}, if $\partial_{x} p(r)=0$ then

$$
0=\overline{\frac{\partial_{x} p}{p}(r)}=\frac{\overline{\sum_{i=1}^{d} \prod_{j \neq i}\left(r-\lambda_{j}(p)\right)}}{\prod_{i=1}^{d}\left(r-\lambda_{i}(p)\right)}=\overline{\sum_{i=1}^{d} \frac{1}{r-\lambda_{i}(p)}}=\sum_{i=1}^{d} \frac{r-\lambda_{i}(p)}{\left|r-\lambda_{i}(p)\right|^{2}} .
$$

Rearranging then gives

$$
\sum_{i=1}^{d} \frac{r}{\left|r-\lambda_{i}(p)\right|^{2}}=\sum_{i=1}^{d} \frac{\lambda_{i}(p)}{\left|r-\lambda_{i}(p)\right|^{2}} \Longrightarrow r=\sum_{i=1}^{d} \frac{\frac{1}{\left|r-\lambda_{i}(p)\right|^{2}}}{\sum_{j=1}^{d} \frac{1}{\left|r-\lambda_{j}(p)\right|^{2}}} \cdot \lambda_{i}(p)
$$

This is a convex combination of the $\lambda_{i}(p)$.
Conceptual proof: $0=\sum_{i} \frac{r-\lambda_{i}(p)}{\left|r-\lambda_{i}(p)\right|^{2}} \Longleftrightarrow$ equillibria of electric potential.
Corollary: ∂_{x} preserves real-, half-plane-, or disc-rooted polynomials.

The polar derivative

Recall: Both ∂_{x} and ∂_{y} for $p \in \mathbb{R}_{h}^{d}[x: y]$ preserve real-rootedness. Gauss-Lucas: ∂_{x} preserves other sets.

What about ∂_{y} ?

$$
\partial_{y}=(\text { flip coeff. })^{-1} \circ \partial_{x} \circ(\text { flip coeff. })
$$

Since flipping coeff. \Longleftrightarrow inverting roots, ∂_{y} preserves roots in sets which are inverses of convex sets. E.g.: half-planes, exterior of discs.

More generally: ∂_{y} preserves roots in any set "convex with respect to 0 ".
Why? Flipping coefficients/inverting roots maps $0 \longleftrightarrow \infty$.
Flipping coefficients is a Möbius transformation. What about others?

- If ϕ is a Möbius transform, then $\phi^{-1} \circ \partial_{x} \circ \phi$ preserves roots in $\phi^{-1}(K)$ for any convex K. So what?

More general polar derivatives via Möbius transformations

Möbius transformation: $\phi \in \mathrm{SL}_{2}(\mathbb{C})$ and $\phi: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$.
On polynomials, ϕ acts on roots: For $p \in \mathbb{C}_{h}^{d}[x: y]$,

$$
\phi^{-1}=\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right] \Longrightarrow \phi \cdot p=p\left(\phi^{-1}\binom{x}{y}\right)=p(\alpha x+\beta y: \gamma x+\delta y)
$$

Lemma: Given ϕ^{-1} as above and $p \in \mathbb{C}_{h}^{d}[x: y]$, we have

$$
\left(\phi^{-1} \circ \partial_{x} \circ \phi\right) p=\left(\alpha \partial_{x}+\gamma \partial_{y}\right) p
$$

Proof:

$$
\begin{aligned}
\left(\phi^{-1} \circ \partial_{x} \circ \phi\right) p & =\phi^{-1} \cdot \partial_{x}[p(\alpha x+\beta y: \gamma x+\delta y)] \\
& =\phi^{-1} \cdot\left[\left(\alpha \partial_{x}+\gamma \partial_{y}\right) p\right](\alpha x+\beta y: \gamma x+\delta y) \\
& =\left(\alpha \partial_{x}+\gamma \partial_{y}\right) p .
\end{aligned}
$$

Laguerre's theorem

Laguerre's theorem: $\left(\alpha \partial_{x}+\gamma \partial_{y}\right)$ preserves roots in circular regions
$C \subset \mathbb{C P}^{1}$ which do not contain $(\alpha: \gamma)$.
Circular regions: Equivalent definitions.

- Möbius transformations of the unit disc.
- Half-spaces in \mathbb{R}^{3} intersected with the Riemann sphere $\left(\cong \mathbb{C P}^{1}\right)$.
E.g.: Discs, exteriors of discs (with ∞), half-planes.

Proof: By the lemma, $\alpha \partial_{x}+\gamma \partial_{y}=\phi^{-1} \partial_{x} \phi$ with $\phi^{-1}(\infty)=(\alpha: \gamma)$.
(1) All roots of p are contained in $C \subset \mathbb{C P}^{1}$ with $(\alpha: \gamma) \notin C$.
(2) Since ϕ acts on roots, roots of $\phi \cdot p$ are contained in $\phi \cdot C \in \mathbb{C P}^{1}$ with $\infty=\phi(\alpha: \gamma) \notin \phi \cdot C$.
(3) Therefore $\phi \cdot C \subset \mathbb{C}$ is convex and Gauss-Lucas applies.
(9) Finally, the inverse action ϕ^{-1} moves roots back to $C \subset \mathbb{C P}^{1}$.

Polar derivatives and real-rooted polynomials

Fact: If p is real-rooted, then $\left(\alpha \partial_{x}+\gamma \partial_{y}\right) p$ is real-rooted for all $\alpha, \gamma \in \mathbb{R}$. Proof: $\alpha \partial_{x}+\gamma \partial_{y}=\phi^{-1} \partial_{x} \phi$, and we can choose $\phi \in \mathrm{SL}_{2}(\mathbb{R})$.

Corollary: The roots of $\partial_{x} p$ and $\partial_{y} p$ are interlaced (by Hermite-Kakeya-Obreschkoff theorem).

Fact: If $p \ll q$, then $L:=\alpha \partial_{x}+\gamma \partial_{y}$ implies $L p \ll L q$ for all $\alpha, \gamma \in \mathbb{R}$.
Proof: $p \ll q$
(1) $\Longrightarrow p+i q$ has all roots in the closure of upper half-plane $=\overline{\mathcal{H}_{+}}$(by Hermite-Biehler theorem),
(2) $\Longrightarrow L(p+i q)=L p+i L q$ has all roots in $\overline{\mathcal{H}_{+}}$,
(3) $\Longrightarrow L p \ll L q$ (by Hermite-Biehler again).

Further: Real linear preservers of roots in $\overline{\mathcal{H}_{+}}$preserve interlacing.

Outline

(1) The big three: roots, coefficients, evaluations

- Roots and coefficients
- Real-rooted polynomials
- Coefficients, evaluations, and log-concavity
(2) Interlacing polynomials
- Interlacing via pictures
- Classic example: matchings of a graph

3) The Gauss-Lucas theorem and polar derivatives

- The derivative and complex roots
- Laguerre's theorem
(4) The granddaddy of 'em all: Grace's theorem
- The apolarity bilinear form
- Why we care: a preview of next week
- $\mathrm{SL}_{2}(\mathbb{C})$-invariance
(5) Open problems

A special bilinear form on polynomials

Laguerre: If $\left(r_{1}: s_{1}\right), \ldots,\left(r_{d}: s_{d}\right) \in C$ and $\left(\alpha_{1}: \gamma_{1}\right) \notin C$, then

$$
r(x: y)=\left(\alpha_{1} \partial_{x}+\gamma_{1} \partial_{y}\right) \prod_{i=1}^{d}\left(s_{i} x-r_{i} y\right) \quad \text { has all roots in } C .
$$

Induct: If $\left(r_{i}: s_{i}\right) \in C$ and $\left(\alpha_{i}: \gamma_{i}\right) \notin C$, then

$$
r(x: y)=\prod_{i=1}^{d^{\prime}}\left(\alpha_{1} \partial_{x}+\gamma_{1} \partial_{y}\right) \prod_{i=1}^{d}\left(s_{i} x-r_{i} y\right) \quad \text { has all roots in } C
$$

If $d^{\prime} \leq d$, the root conditions guarantee that $r \not \equiv 0$.
Candidate for "interesting" bilinear form for $p, q \in \mathbb{C}_{h}^{d}[x: y]$:

$$
\langle p, q\rangle^{d}:=p\left(\partial_{y}:-\partial_{x}\right) q(x: y) \in \mathbb{C}
$$

Also can be defined for $\mathbb{C}^{d}[x]$. In terms of coefficients?

Grace's apolarity theorem

Theorem (Grace): If $p, q \in \mathbb{C}^{d}[x]$ and a circular region C are such that the roots of q are all in C and the roots of p are all not in C, then

$$
\sum_{k=0}^{d}\binom{d}{k}^{-1}(-1)^{k} p_{k} q_{d-k} \neq 0
$$

Proof: If we can show that this bilinear form is equal up to scalar the one from the previous slide, then the previous slide proves the theorem. On the monomial basis, we compute:

$$
\begin{aligned}
\left\langle x^{k} y^{d-k}, x^{j} y^{d-j}\right\rangle^{d} & =(-1)^{d-k} \partial_{y}^{k} \partial_{x}^{d-k} x^{j} y^{d-j} \\
& =(-1)^{d-k} k!(d-k)!\cdot \delta_{j=d-k} \\
& =(-1)^{d} d!\left[\binom{d}{k}^{-1}(-1)^{k} \cdot \delta_{j=d-k}\right] .
\end{aligned}
$$

Grace's theorem: Why do we care? (A preview)

Some bilinear form is non-zero. So what?
Many classical theorems are proven using Grace's theorem. How?
First: We can interpret the bilinear form as a choice of isomorphism between $\mathbb{C}_{h}^{d}[x: y]$ and its dual space $\mathbb{C}_{h}^{d}[x: y]^{*}$ via $p \longleftrightarrow\langle p, \cdot\rangle^{d}$.

Next: Induce a map from linear operators on polynomials to polynomials in more variables. Letting \mathcal{L}_{d} denote the space of operators,
$\mathcal{L}_{d} \cong \mathbb{C}_{h}^{d}[x: y] \otimes \mathbb{C}_{h}^{d}[x: y]^{*} \stackrel{\downarrow}{\cong} \mathbb{C}_{h}^{d}[x: y] \otimes \mathbb{C}_{h}^{d}[x: y] \cong \mathbb{C}_{h}^{(d, d)}[x: y, z: w]$.
Denoting this by Symb ${ }^{d}: \mathcal{L}_{d} \xrightarrow{\sim} \mathbb{C}_{h}^{(d, d)}[x: y, z: w]$ gives:

$$
T[p](x: y)=\left\langle\operatorname{Symb}^{d}[T](x: y, z: w), p(z: w)\right\rangle^{d}
$$

Finally: Zero location of p and $\operatorname{Symb}^{d}[T]$ implies non-vanishing of $T[p]$.

$\mathrm{SL}_{2}(\mathbb{C})$ and the apolarity form

Fact: The apolarity form $\langle p, q\rangle^{d}$ is uniquely $\mathrm{SL}_{2}(\mathbb{C})$-invariant:

$$
\langle p, q\rangle^{d}=\langle\phi \cdot p, \phi \cdot q\rangle^{d} \quad \text { for all } p, q, \phi
$$

Makes sense, as the apolarity theorem is $\mathrm{SL}_{2}(\mathbb{C})$ invariant.
A special $\mathrm{SL}_{2}(\mathbb{C})$-invariant operator D :

$$
D[p(x: y) q(z: w)]:=\left(\partial_{x} \partial_{w}-\partial_{y} \partial_{z}\right)[p(x: y) q(z: w)]
$$

Corollary(?): $D^{d}[p q]=\langle p, q\rangle^{d}$ up to scalar.
Proof: Uniqueness of $S L_{2}(\mathbb{C})$-invariant bilinear form, or easy computation.
Stronger: The D map preserves multivariate root location properties for polynomials $p(x: y, z: w)$. (The D map acts on the space $\mathbb{C}_{h}^{(d, d)}[x: y, z: w]$ of polynomials taking input in $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$.)

An aside: Representation theory of $\mathrm{SL}_{2}(\mathbb{C})$

Theorem: The finite dimensional irreducible representations of $\mathrm{SL}_{2}(\mathbb{C})$ are precisely given by $V_{d}:=\mathbb{C}_{h}^{d}[x: y]$ for all $d \geq 0$.

Theorem (Clebsch-Gordon): The tensor square decomposes as

$$
\mathbb{C}_{h}^{(d, d)}[x: y, z: w] \cong V_{d} \otimes V_{d} \cong V_{2 d} \oplus V_{2 d-2} \oplus V_{2 d-4} \oplus \cdots \oplus V_{2} \oplus V_{0}
$$

Fact: The $D=\partial_{x} \partial_{w}-\partial_{y} \partial_{z}$ map acts as $D: V_{d} \otimes V_{d} \rightarrow V_{d-1} \otimes V_{d-1}$. $\mathrm{SL}_{2}(\mathbb{C})$-invariance implies D simply projects away from the top component in the above decomposition (the $V_{2 d}$ component).

Other names: Cayley's Ω process, transvectants, Reynolds operator, etc.
Corollary(?): The V_{0} component picks out the apolarity form. Proof: Uniqueness of $\mathrm{SL}_{2}(\mathbb{C})$-invariant bilinear form. (The decomposition is also itself a proof of uniqueness.)

Outline

(1) The big three: roots, coefficients, evaluations

- Roots and coefficients
- Real-rooted polynomials
- Coefficients, evaluations, and log-concavity
(2) Interlacing polynomials
- Interlacing via pictures
- Classic example: matchings of a graph

3) The Gauss-Lucas theorem and polar derivatives

- The derivative and complex roots
- Laguerre's theorem
(4) The granddaddy of 'em all: Grace's theorem
- The apolarity bilinear form
- Why we care: a preview of next week
- $\mathrm{SL}_{2}(\mathbb{C})$-invariance
(5) Open problems

Sendov's conjecture

Suppose $p \in \mathbb{C}[x]$ has all its roots $\lambda_{1}(p), \ldots, \lambda_{d}(p)$ in the closed unit disc. How far away can the critical points be?

Conjectural worst case: $p(x)=x^{d}-1 \Longrightarrow\left|\lambda_{i}(p)-\lambda_{j}\left(\partial_{x} p\right)\right|=1$. Sendov's conjecture: $\forall i \exists j$ such that $\left|\lambda_{i}(p)-\lambda_{j}\left(\partial_{x} p\right)\right| \leq 1$. That is, every zero of p is within distance 1 of a critical point of p.

Known facts:

- Known to be true for $d \leq 8$.
- For $d=3$, critical points are the foci of the inscribed ellipse of the convex hull of the zeros.
- If $\left|\lambda_{i}(p)\right|=1$, then the bound is known for that choice of i.
- For any particular fixed root r_{0}, there is a number d_{0} for which $d \geq d_{0}$ implies the bound for $\lambda_{i}(p)=r_{0}$.
- The conjectural worst case is not the only local maximum.

Apolarity theorem for $\mathrm{SU}_{n}(\mathbb{C})$ form

Grace's theorem: Non-vanishing for $\mathrm{SL}_{2}(\mathbb{C})$-invariant bilinear form.
Can we extend this beyond $\mathrm{SL}_{2}(\mathbb{C})$? There isn't quite an $\mathrm{SL}_{n}(\mathbb{C})$-invariant form, but there is an $\mathrm{SU}_{n}(\mathbb{C})$-invariant form for polynomials $p \in \mathbb{C}_{h}^{d}\left[x_{1}: \cdots: x_{n}\right]$ with $p(x)=\sum_{\mu} p_{\mu} x^{\mu}$:

$$
\langle p, q\rangle^{d}:=\sum_{|\boldsymbol{\mu}|=d}\binom{d}{\boldsymbol{\mu}}^{-1} p_{\mu} q_{\mu}
$$

Open question: For what classes of polynomials do we get a Grace-type theorem for this bilinear form?

Alternative form: $\langle p, q\rangle^{d}=D^{d}(p(x) q(z))$ for $D:=\sum_{i=1}^{n} \partial_{x_{i}} \partial_{z_{i}}$.
Another idea: Extend to multivariate setting via $\mathrm{SL}_{2}(\mathbb{C})^{n}$ (next week).

