
Capacity and Scaling Algorithms
Polynomial Capacity: Theory, Applications, Generalizations

Jonathan Leake

Technische Universität Berlin

February 11th, 2021

Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 1 / 22

Outline

1 Matrix scaling
Motivation
Sinkhorn’s scaling algorithm
Analysis and connection to capacity

2 Operator scaling
Motivation
Algorithm for scaling operators
Matrix capacity

3 Generalizations and other questions

Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 2 / 22

Outline

1 Matrix scaling
Motivation
Sinkhorn’s scaling algorithm
Analysis and connection to capacity

2 Operator scaling
Motivation
Algorithm for scaling operators
Matrix capacity

3 Generalizations and other questions

Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 3 / 22

The matrix scaling problem

Let M be an m × n matrix with R+ entries, and fix r ∈ Rm
+ and c ∈ Rn

+.

Definition: A scaling of M is given by multiplying M on the left and
right by diagonal matrices with positive entries:

scaling = AMB =⇒ (AMB)ij = aiimijbjj .

Question: Given M, do there exist such A,B such that the row sums and
column sums of AMB are r and c respectively?

Easy: Achieve rows sums by letting α be the row sums of M and apply:

A := diag
(r1
α1
, . . . ,

rm
αm

)
=⇒

n∑
j=1

(AM)ij =
n∑

j=1

ri
αi
·mij = ri .

And same for the columns. But what about both at the same time?

Scaling the rows changes the column sums, and vice versa...

Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 4 / 22

Why do we care about matrix scaling?
Application: Deterministic approximation to the permanent. How?

Given an n × n matrix M, set r = c = 1. Suppose we have obtained the
matrices A,B which scale M to the correct row/column sums.

Since AMB is doubly stochastic, we can use van der Waerden bound:

1 ≥ per(AMB) ≥ n!
nn ≥ e−n (e.g., recall Cap1(p) ≥ p1 ≥

n!
nn Cap1(p)).

Now: per(AM) =
∑
σ∈Sn

n∏
i=1

(AM)i ,σ(i) =
∑
σ∈Sn

n∏
i=1

aiimi ,σ(i) = det(A) per(M).

Similar for B: per(AMB) = det(A) per(M) det(B). Therefore:

[det(A) det(B)]−1 ≥ per(M) ≥ e−n [det(A) det(B)]−1 .

This says that det(AB)−1 is an en-approximation to the permanent of M.

[Linial-Samorodnitsky-Wigderson ’00]: No capacity at the time, but
the vdW bound was already proven by Egorychev and Falikman.

Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 5 / 22

How to compute the scaling?
If we have the scaling, then we get an approximation to the permanent.

Questions: How do we compute the A,B? How do we know A,B exist?

Existence: Right off the bat, per(M) = 0 =⇒ not scalable. (per(M) = 0
is equivalent to non-existence of perfect matchings in bipartite graph.)

Problem: There exists non-scalable M with per(M) > 0.

Solution: Can almost scale when per(M) > 0 [Rothblum-Schneider ’89]:

A,B such that row-sums(AMB) = r and col-sums(AMB) = c ′

with ‖c − c ′‖ < ε for any ε.

New problem: For the case of r = c = 1 and the permanent, the vdW
bound only works for doubly stochastic matrices. How do we handle
“almost doubly stochastic” matrices? Handle this later...

First: How do we even compute A and B?
Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 6 / 22

Sinkhorn’s scaling algorithm
Given M, want to compute A,B so that AMB is almost doubly stochastic.

Sinkhorn’s algorithm is a very simple iterative algorithm for Mt :
1 Scale the columns so that col-sums(Mt+1) = 1.
2 Scale the rows so that row-sums(Mt+2) = 1 (changes col sums).
3 Repeat iterations until Mt is almost doubly stochastic.

Keep track of Mt = · · ·A6A4A2MB1B3B5 · · · , which gives A and B.

Question: How many iterations do we need?

[LSW ’00]: If per(M) > 0, then poly(n) iterations gives Mt with row
sums 1 and col sums ct such that ‖1− ct‖2

2 small (after preprocessing).

Proof idea: When ‖1− ct‖2
2 = C , iteration scales permanent by

1 + Ω(C). So big C implies big permanent improvement.

Finally: Van der Waerden-type bounds on the permanent for “close” to
doubly stochastic give the exponential approximation.

Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 7 / 22

The LSW algorithm

Given M, want to compute A,B so that AMB is almost doubly stochastic.

Main algorithm steps:
1 Preprocessing: Scale to get M1 such that per(M1) ≥ 1

nn .
2 Sinkhorn: Apply iterative scaling until ‖1− ct‖2 is small.
3 Approximation: Mt is close to doubly stochastic =⇒ ≈ en-approx.

Output: A = A2A4A6 · · · and B = B1B3B5 · · · and per(M) ≈ det(AB)−1.

Different “marginals”: Similar algorithm given in [LSW ’00].

General form of multiplicative iterative scaling algorithms:
1 Lower bound: Only need “small” number of steps to get close to DS.
2 Progress: Apply Sinkhorn until “marginals” close to DS.
3 Approximation: Once close to DS, use vdW-type approximation.

This framework works in more general operator (tensor?) scaling setting.
Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 8 / 22

Analyzing the progress step
Lemma: Given x ∈ Rn

+ such that
∑

i xi = n and ‖1− x‖2
2 = C , we have:

n∏
i=1

xi ≤ 1− C
2 + O(C3/2) =⇒ 1∏

i xi
≥ 1 + Ω(C).

Corollary: If Mt has row sums rt = 1 and column sums ct with
‖1− ct‖2

2 = εt , then 1 ≥ per(Mt+1) ≥ (1 + Ω(εt)) · per(Mt).

Proof: Note that
∑

i (ct)i =
∑

i (rt)i = n. Scaling columns gives

per(Mt+1) = per
(
Mt · diag(c−1

t)
)

= per(Mt) · 1∏
i (ct)i

.

Apply lemma to get per(Mt+1) ≥ (1 + Ω(εt)) · per(Mt).

Now: For εt ≥ 1
n3 , apply O(n4 log n) steps to get factor of:(
1 + Ω

(1
n3

))O(n4 log n)
≈ eO(n log n) = O(nn).

Finally: Either εt becomes small or O(nn) improvement to permanent.
Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 9 / 22

The LSW algorithm with more detail
Recall the algorithm: (assuming per(M) > 0)

1 Preprocess to get per(M1) ≥ 1
nn = e−poly(n).

2 Iterate O(n4 log n) times until εt < 1
n3 or O(nn) improvement.

3 If O(nn) improvement, then 1 ≥ per(Mt) = O(1) ≈ 1.
4 Otherwise ‖1− ct‖2

2 <
1
n3 =⇒ Mt ≈ doubly stochastic.

Question: What about the last step?

Answer: [LSW ’00] gives a vdW-type approximation for close-to-DS Mt .

Generalization: Recall p(x) :=
∏n

i=1
∑n

j=1 mijxj where p is real stable
and p1 = per(M). We have:

Row sums = 1 =⇒ p(1) =
∏n

i=1
∑n

j=1 mij = 1.
Column sums = c =⇒ ∇p(1) = c.

More general question: Can we bound the coefficient p1 when real
stable p is close to being a doubly stochastic polynomial?

Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 10 / 22

Close-to-doubly stochastic real stable polynomials

Theorem (Gurvits-L ’20)
Let p ∈ R+[x1, . . . , xn] be a homogeneous polynomial of degree n with
p(1) = 1. If p is real stable and ‖1−∇p(1)‖1 < 2, then

1 ≥ Cap1(p) = inf
x>0

p(x)
x1 ≥

(
1− ‖1−∇p(1)‖1

2

)n
.

Combine with Gurvits’ theorem when ∇p(1) = c:

1 ≥ Cap1(p) ≥ p1 ≥
n!
nn · Cap1(p) ≥ n!

nn ·
(

1− ‖1− c‖1
2

)n
.

If ‖1− c‖2
2 ≤ 1

n3 , then ‖1− c‖1 ≤ 1
n . Therefore:

1 ≥ p1 ≥
n!
nn ·

(
1− 1

2n

)n
≈ n!

nn · e
− 1

2 ≥ e−n.

This gives the final piece of the algorithm for approximating per(M).
Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 11 / 22

Outline

1 Matrix scaling
Motivation
Sinkhorn’s scaling algorithm
Analysis and connection to capacity

2 Operator scaling
Motivation
Algorithm for scaling operators
Matrix capacity

3 Generalizations and other questions

Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 12 / 22

The operator scaling problem

Let T be a linear operator from m ×m matrices to n × n matrices which
maps PSD matrices to PSD matrices.

Definition: A scaling of T is given by PD matrices A,B:

scaling = A1/2T (B1/2XB1/2)A1/2, another PSD-preserving operator.

Question: Given T , do there exist A,B to scale to “doubly stochastic”?

Doubly stochastic operator: T (Im) = In and T ∗(In) = Im (=⇒ m = n).

Translated to matrices: M · 1 = 1 and M∗ · 1 = 1 (doubly stochastic).

As before: Easy to scale one or the other, but what about both? E.g.:

A := T (In)−1 =⇒
[
A1/2 · T · A1/2

]
(In) = In.

Scaling via A affects T ∗(In) and scaling via B affects T (In).

Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 13 / 22

Why do we care about operator scaling?
Main operators of study are completely positive (CP) operators:

T (X) =
∑̀
k=1

M∗k X Mk =⇒ T ∗(Y) =
∑̀
k=1

Mk X M∗k ,

where Mk are any m × n complex matrices.

Fun fact: Equivalent to (idk×k ⊗ T) preserving PSD matrices for all k.

First idea [Gurvits ’04]: There is an (approximate) scaling if and only if
T is rank non-decreasing: rank(T (X)) ≥ rank(X) for all X � 0.

Matrix case: “Rank non-decreasing” = #{(Mx)i = 0} ≥ #{xi = 0} for
all x ∈ Rn

+. This is Hall marriage condition ⇐⇒ #pm = per(M) > 0.

I.e.: Rank non-decreasing is operator version of Hall marriage condition.

Summary: Scalability of T is related to some “non-singularity property”
of the matrices M1, . . . ,M`.

Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 14 / 22

Why do we care about operator scaling?
Last slide: T is scalable to DS iff rank(T (X)) ≥ rank(X) for all X � 0.

CP operator: T (X) =
∑̀
k=1

M∗k X Mk =⇒ T ∗(X) =
∑̀
k=1

Mk X M∗k .

Why do we care about rank non-decreasing? Equivalent properties
(see [Garg-Gurvits-Oliveira-Wigderson ’15], Theorem 1.4):

1 rank(T (X)) ≥ rank(X) for all X � 0.
2 For some B1, . . . ,B`, the matrix

∑`
k=1 Bk ⊗Mk is non-singular.

3 For some k, the polynomial det
(∑`

k=1 Xk ⊗Mk
)

is not identically 0
where Xk is a k × k matrix of variables.

4 The “polynomial” Det
(∑`

k=1 Mkxk
)

is not identically 0, where
x1, . . . , x` are non-commuting variables (non-commutative “Det”).

5 The tuple (M1, . . . ,M`) is not in null-cone of left-right action of SL2
n.

#4: (non-commutative) polynomial identity testing, (NC)PIT:
When is the determinant of a matrix of linear forms identically zero?
[Kabanets-Impagliazzo]: Poly-time PIT =⇒ complexity lower bounds.

Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 15 / 22

Gurvits’ algorithm

Sinkhorn’s algorithm: Alternate scaling rows and columns.

Gurvits’ algorithm: Alternate scaling T and T ∗:

· · ·A1/2
3 A1/2

1 T
(
· · ·B1/2

4 B1/2
2 X B1/2

2 B1/2
4 · · ·

)
A1/2

1 A1/2
3 · · ·

How? Pick A = T (In)−1 for
[
A1/2 T A1/2

]
(In) = In. Pick B = T ∗(In)−1:

[
T
(
B1/2 X B1/2

)]∗
(In) =

[∑̀
k=1

M∗k B1/2XB1/2Mk

]∗
(In)

=
[∑̀

k=1
B1/2MkXM∗k B1/2

]
(In)

= B1/2 · T ∗(In) · B1/2 = In.

That is: T (In) = In after odd steps and T ∗(In) = In after even steps.

Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 16 / 22

The general form of the algorithm
Recall the form, for some “measure of progress” µ:

1 Preprocess: Scale to T1 such that µ(T1) ≥ e−poly(n).
2 Iterations: Iterate poly(n) times, improving µ(Tt) multiplicatively by

1 + 1
O(poly(n)) each time based on “closeness of marginals”.

3 Approximation: Once “marginals” are close to doubly stochastic, we
can approximate. (Approximate what?)

Matrix case: µ = permanent. Could have also used µ = Cap1, since p is
doubly stochastic iff Cap1(p) = 1 and Cap1(p) ≤ 1 otherwise.

Gurvits: Generalize permanent to “quantum permanent” (next slide).

Enough for us: Only need [“marginals” close to doubly stochastic] to
imply [we can (almost) scale to doubly stochastic]. Why?

Recall: Simply knowing whether that T is (almost) scalable implies

Det
(∑̀

k=1
Mkxk

)
6≡ 0 where the variables are non-commutative (NC-PIT).

Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 17 / 22

Measure of progress: Quantum permanent

Gurvits idea to generalize permanent: “Quantum permanent”.

Recall: per(M) = ∂x1 · · · ∂xn |x=0
∏n

i=1
∑n

j=1 mijxj .

Now: Qper(T) := det(∂X)|X=0 det(T (X)) where X is matrix of variables.

Recall: 1 ≥ per(M) ≥ n!
nn for doubly stochastic M.

Problem: There is doubly stochastic T such that Qper(T) = 0:

T (X) := 1
2 (M1XM∗1 + M2XM∗2 + M3XM∗3)

where M1 =
[0 1 0
−1 0 0
0 0 0

]
, M2 =

[0 0 1
0 0 0
−1 0 0

]
, and M3 =

[0 0 0
0 0 1
0 −1 0

]
. These matrices

span the 3× 3 skew-symmetric matrices, all of which are singular.

Upshot: Quantum permanent measures PIT, while DS measures NC-PIT.

Related: det
([

0 z w
−z 0 1
−w −1 0

])
≡ 0, but Det

([
0 z w
−z 0 1
−w −1 0

])
= zw − wz .

Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 18 / 22

Matrix capacity
Last slide: Quantum permanent is not a good measure of progress.

What about some kind of capacity? Matrix capacity:

Cap(T) := inf
X�0

det(T (X))
det(X) .

Easy: If T (In) = In, then Cap(T) ≤ 1.

[Gurvits ’04]: If T (In) = In, then T is doubly stochastic iff Cap(T) = 1.

[Gurvits ’04]: The following are equivalent for CP map T .
1 Cap(T) > 0.
2 T is rank non-decreasing.
3 For all ε > 0, we have Tt(In) = In and ‖T ∗t (In)− In‖F ≤ ε for t � 0.
4 For some t, we have Tt(In) = In and ‖T ∗t (In)− In‖F ≤ 1

n+1 .

This generalizes the matrix case. So to decide rank-nondecreasing, we just
need to scale T to be 1

n+1 -close to doubly stochastic.
Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 19 / 22

Matrix capacity and the scaling algorithm
Matrix case: Polynomial capacity computable via convex programming.
Also: Cap1(p) > 0 ⇐⇒ per(M) > 0 for p ∼ M by Gurvits’ theorem.

Operator case: Close to doubly stochastic via scaling algorithm.
Then: T is almost scalable iff Cap(T) > 0 iff T rank non-decreasing iff...
Unclear: How to compute capacity directly via convex program?

Analysis of algo [GGOW ’15]: Let T (X) =
∑`

k=1 M∗k X Mk .
1 “Preprocessing”: If M1, . . . ,M` have integer entries and

Cap(T) > 0, then Cap(T) ≥ 1
n2n .

2 Progress: For Tt(In) = In and ‖T ∗(In)− In‖F = ε, we have
Cap(Tt+1) ≥ eΩ(

√
ε) · Cap(Tt).

3 Termination: When ε ≤ 1
n+1 , we know that T is (almost) scalable.

For ε > 1
n+1 , we have

[
eΩ(1√

n+1)
]O(n

√
n log n)

= n2n =⇒ poly # iterations.

Crucial: After poly steps, either close to DS or Cap(T) = 0.
Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 20 / 22

Outline

1 Matrix scaling
Motivation
Sinkhorn’s scaling algorithm
Analysis and connection to capacity

2 Operator scaling
Motivation
Algorithm for scaling operators
Matrix capacity

3 Generalizations and other questions

Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 21 / 22

Generalizations and other questions
GGOW algorithm: Used for scaling to doubly stochastic.

Other marginals [Franks ’18]: T (In) = P and T ∗(In) = Q.
Generalizes of matrix capacity to CapA(T). When A = diag(a):

denominator of CapA =
n∏

j=1
det(X[j])aj−aj+1 ,

where X[j] is the top-left j × j submatrix and aj non-increasing.
Seems different than continuous capacity. Connection?
Seems related to the Gelfand-Tsetlin polytope. Connection?

Tensor scaling [Bürgisser-Franks-Garg-Oliveira-Walter-Wigderson]:
Given φ ∈ V⊗m, act on each tensor component iteratively in succession:∑

i
(vi ⊗wi ⊗· · ·)→

∑
i

(A1vi ⊗wi ⊗· · ·)→
∑

i
(A1vi ⊗A2wi ⊗· · ·)→ · · ·

Invariant theory connections: Next week or the week after.
Jonathan Leake (TU Berlin) Capacity and Scaling Algorithms Winter 2020-2021 22 / 22

	Matrix scaling
	Motivation
	Sinkhorn's scaling algorithm
	Analysis and connection to capacity

	Operator scaling
	Motivation
	Algorithm for scaling operators
	Matrix capacity

	Generalizations and other questions

