Multivariate Polynomials Polynomial Capacity: Theory, Applications, Generalizations

Jonathan Leake

Technische Universität Berlin

November 12th, 2020

Notation

"Usual polynomials":

- $\mathbb{C}[x] := v.s.$ of complex polynomials in one variable.
- $\mathbb{C}^{d}[x] := v.s.$ of polynomials of degree at most d.
- For $p \in \mathbb{C}^d[x]$, we write $p(x) = \sum_{k=0}^d p_k x^k$.
- monic := the leading coeffcient is 1.
- deg(p) := the degree of the polynomial.
- $\lambda(p) :=$ the roots/zeros of the polynomial, counting multiplicity.
- $\frac{d}{dx} = \frac{\partial}{\partial x} = \partial_x :=$ derivative with respect to x.

Polynomials with zeros in projective space:

- $\mathbb{C}_h^d[x:y] := v.s.$ of bivariate homogeneous polynomials of degree d.
- For $p \in \mathbb{C}_h^d[x:y]$, we write $p(x:y) = \sum_{k=0}^d p_k x^k y^{d-k}$.
- $\mathbb{CP}^1 = \mathbb{C} \cup \{\infty\} :=$ complex projective line, or Riemann sphere.
- $SL_2(\mathbb{C}) := 2 \times 2$ invertible complex matrices, det = 1.
- $\partial_y :=$ derivative with respect to y.

The **geometry of polynomials** is generally an investigation of the connections between the various properties of polynomials:

- Algebraic, via the roots/zeros of the polynomial.
- **Combinatorial**, via the coefficients of the polynomial.
- Analytic, via the evaluations of the polynomial.

Why do we care? We use features of the interplay between these three to prove facts about mathematical objects which a priori have nothing to do with polynomials.

Typical method:

- **()** Encode some object as a polynomial which has some nice properties.
- **Output Apply operations** to that polynomial which preserve those properties.
- **③** Extract information at the end which relates back to the object.

Outline

Grace's theorem and corollaries

- Grace's theorem
- Multiaffine polynomials and the Walsh coincidence theorem

2 Stability and multivariate polynomials

- Real stability
- The strong Rayleigh conditions
- Proof of equivalence

3 Stability preservers

- The Borcea-Brändén characterization
- The BB characterization for real stability
- The less important direction of the proof

Open problems

Outline

1 Grace's theorem and corollaries

- Grace's theorem
- Multiaffine polynomials and the Walsh coincidence theorem

2 Stability and multivariate polynomials

- Real stability
- The strong Rayleigh conditions
- Proof of equivalence

Stability preservers

- The Borcea-Brändén characterization
- The BB characterization for real stability
- The less important direction of the proof

Open problems

Laguerre's theorem

Recall Laguerre's theorem: If

- $C \subset \mathbb{CP}^1$ is a circular region (disc, half-plane, complement of disc),
- $p \in \mathbb{C}_h^d[x : y]$ has all its roots in C,
- $(a:b) \in \mathbb{CP}^1$ is not in C,

then $(a\partial_x + b\partial_y)p$ has all its roots in C.

"Usual polynomials" version: If

- $C \subset \mathbb{C}$ is a circular region,
- **2** $p \in \mathbb{C}^d[x]$ has all its roots in C $(d \deg(p)$ counts roots at ∞),
- $a \in \mathbb{C}$ is not in C,

then $(a\partial_x + \partial_y)p := d \cdot p(x) - (x - a) \cdot p'(x)$ has all its roots in C.

Idea: $a\partial_x + b\partial_y = \phi^{-1} \circ \partial_x \circ \phi =$ rotate roots in \mathbb{CP}^1 via $\phi \in SL_2(\mathbb{C})$, then take derivative and apply Gauss-Lucas, then rotate roots back. **Also:** $(a\partial_x + b\partial_y)p \neq 0$, or else implies p(a:b) = 0.

Grace's theorem

First: If $(r_i : s_i) \notin C$ and $(a_1 : b_1) \in C$, then

$$f(x:y) = (a_1\partial_x + b_1\partial_y)\prod_{i=1}^d (s_ix - r_iy) \in \mathbb{C}_h^{d-1}[x:y]$$

has all roots outside of C.

Next: If $(r_i : s_i) \notin C$ and $(a_i : b_i) \in C$, then

$$f(x:y) = \prod_{i=1}^{d} (a_i \partial_x + b_i \partial_y) \prod_{i=1}^{d} (s_i x - r_i y) \in \mathbb{C}^0_h[x:y]$$

has all roots outside of C. $\implies f \not\equiv 0$.

Grace's theorem: If $p, q \in \mathbb{C}_h^d[x : y]$ are such that p has all roots in C and q has no roots in C, then $\langle p, q \rangle^d := p(\partial_y : -\partial_x)q(x : y) \neq 0$.

Aside: $\langle p, q \rangle^d = D^d(p(x : y)q(z : w))$ for $D = \partial_x \partial_w - \partial_y \partial_z$, where D is $SL_2(\mathbb{C})$ -invariant $\implies \langle \cdot, \cdot \rangle^d$ is unique $SL_2(\mathbb{C})$ -invariant bilinear form.

Grace's theorem: Why do we care?

Bilinear form $\langle \cdot, \cdot \rangle^d$ is non-zero when roots are separated. So what?

Many classical theorems are proven using Grace's theorem. How?

First: We can interpret the bilinear form as a choice of isomorphism between $\mathbb{C}_h^d[x:y]$ and its dual space $\mathbb{C}_h^d[x:y]^*$ via $p \longleftrightarrow \langle p, \cdot \rangle^d$.

Next: Induce a map from linear operators on polynomials to polynomials in more variables. Letting \mathcal{L}_d denote the space of operators,

$$\mathcal{L}_d \cong \mathbb{C}^d_h[x:y] \otimes \mathbb{C}^d_h[x:y]^* \stackrel{\downarrow}{\cong} \mathbb{C}^d_h[x:y] \otimes \mathbb{C}^d_h[x:y] \cong \mathbb{C}^{(d,d)}_h[x:y,z:w].$$

Denoting this by $\mathsf{Symb}^d : \mathcal{L}_d \xrightarrow{\sim} \mathbb{C}_h^{(d,d)}[x:y,z:w]$ gives:

$$T[p](x:y) = \left\langle \mathsf{Symb}^d[T](x:y,z:w), p(z:w) \right\rangle^d.$$

Finally: Zero location of p and Symb^d[T] implies non-vanishing of T[p].

Multivariate polynomials?

Now: Multivariate theory

- The idea of Symb^d requires multivariate polynomials.
- Multivariate allows more direct connection to mathematical objects.
- E.g.: Matching polynomial with one variable per vertex.
- Problem: No analogue to the fundamental theorem of algebra.
- Problem: Zeros cannot be contained to some compact region.

Hint: Given $p \in \mathbb{C}_h^d[x : y]$ with roots $(r_i : s_i) \notin C$, define

$$P(z_1:w_1,\ldots,z_d:w_d):=\frac{1}{d!}\prod_{i=1}^d(z_i\partial_x+w_i\partial_y)\prod_{i=1}^d(s_ix-r_iy).$$

P is a multivariate polynomial of degree one in each variable $(z_i : w_i)$.

Grace's theorem: *P* has no zeros in $C \times \cdots \times C$.

Walsh coincidence theorem

The **polarization** of a polynomial *p*:

$$P(z_1:w_1,\ldots,z_d:w_d):=\frac{1}{d!}\prod_{i=1}^d(z_i\partial_x+w_i\partial_y)\prod_{i=1}^d(s_ix-r_iy).$$

Properties:

- P is symmetric.
- P is of degree one in each variable (multiaffine).
- $P(z:w,\ldots,z:w) = p(z:w)$, via product rule:

$$(z\partial_x + w\partial_y)\prod_{i=1}^d (s_ix - r_iy) = \sum_{i=1}^d (s_iz - r_iw)\prod_{j\neq i} (s_jx - r_jy) = \cdots$$

• The **unique** polynomial with these properties.

Walsh coincidence theorem: A polynomial p has no roots in C if and only if its **polarization** has no roots in C^d .

Jonathan Leake (TU Berlin)

Multivariate Polynomials

Walsh coincidence theorem for "usual polynomials":

$$p(x) = \sum_{k=0}^{d} \binom{d}{k} \tilde{p}_{k} x^{k} \quad \Longleftrightarrow \quad P(\mathbf{x}) = \sum_{S \in \binom{[d]}{k}} \tilde{p}_{|S|} \mathbf{x}^{S} = \sum_{k=0}^{d} \sum_{|S|=k} \tilde{p}_{k} \mathbf{x}^{S}$$

Stability in a circular region is preserved (stability = no zeros).

Stability-preserving map between $\mathbb{C}^{d}[x]$ and $\mathbb{C}^{(1,\dots,1)}[x_{1},\dots,x_{d}]$ (or equivalently between $\mathbb{C}_{h}^{d}[x:y]$ and $\mathbb{C}_{h}^{(1^{d})}[x:y]$).

More variables:
$$\mathbb{C}^{(\lambda_1,\ldots,\lambda_n)}[x_1,\ldots,x_n] \iff \mathbb{C}^{(\mathbf{1}^{\lambda_1},\ldots,\mathbf{1}^{\lambda_n})}[x_1,\ldots,x_n].$$

Conceptual takeaway: Stability properties for a space of polynomials equivalent to properties on some isomorphic symmetric multiaffine space.

Outline

Grace's theorem and corollaries

- Grace's theorem
- Multiaffine polynomials and the Walsh coincidence theorem

2 Stability and multivariate polynomials

- Real stability
- The strong Rayleigh conditions
- Proof of equivalence

B) Stability preservers

- The Borcea-Brändén characterization
- The BB characterization for real stability
- The less important direction of the proof

Open problems

Real stability

Multivariate polynomial spaces: $\mathbb{C}^{\lambda}[\mathbf{x}] = \mathbb{C}^{(\lambda_1,...,\lambda_n)}[x_1,...,x_n] = \text{set of}$ all polynomials in variables $x_1,...,x_n$ of degree at most λ_i in x_i for all i.

Note: From now on, mainly work with "usual polynomial" spaces, but remember that everything is equivalent.

Very important definition: A polynomial $p \in \mathbb{C}^{\lambda}[x]$ is stable if:

 $x_1, \ldots, x_n \in \mathcal{H}_+ =$ upper half-plane $\implies p(x_1, \ldots, x_n) \neq 0.$

If we further have $p \in \mathbb{R}^{\lambda}[x]$, then p is real stable.

E.g.: Matching poly., spanning tree poly., det $(\sum_i A_i x_i)$ for A_i PSD.

Walsh coincidence theorem says p is stable iff the polarization P is.

Can always keep in mind any other circular region C and use C^n -stable. E.g.: \mathcal{H}^n_+ -stable and \mathcal{H}^n_- -stable for upper and lower half-plane stability.

Jonathan Leake (TU Berlin)

Real stable: the "right" generalization of real-rooted

Fact: If $p \in \mathbb{R}^{d}[x]$ is univariate, then p is real stable iff p is real-rooted. **Proof:** For real polynomials, non-real zeros come in conjugate pairs.

Equivalent properties for $p \in \mathbb{R}^{\lambda}[\mathbf{x}]$:

- **2 Zero location:** *p* is real stable.
- 2 Linear restrictions: $p(at + b) \in \mathbb{R}^{\lambda_1 + \dots + \lambda_n}[t]$ is real-rooted for all $a \in \mathbb{R}^n_+$ (positive orthant) and $b \in \mathbb{R}^n$.
- **③ Strong Rayleigh [Brändén '07]:** For p multiaffine ($\lambda = 1$),

$$R_{ij}(p) := \left. \left(\partial_{x_i} p \cdot \partial_{x_j} p - p \cdot \partial_{x_i} \partial_{x_j} p \right) \right|_{x_i = x_j = 0} \ge 0 \quad \text{for } x \in \mathbb{R}^n, \text{ all } i, j.$$

Example:
$$p(x_1, x_2) = x_1x_2 - 1$$
.
1 $x_1, x_2 \in \mathcal{H}_+ \implies x_1x_2 \neq 1 \implies x_1x_2 - 1 \neq 0$
2 $(a_1t + b_1)(a_2t + b_2) - 1 = a_1a_2t^2 + (a_1b_2 + a_2b_1)t + (b_1b_2 - 1)$
 $\implies (a_1b_2 + a_2b_1)^2 - 4a_1a_2(b_1b_2 - 1) = (a_1b_2 - a_2b_1)^2 + 4a_1a_2 \ge 0$
3 $i = 1, j = 2 \implies x_2 \cdot x_1 - (x_1x_2 - 1) \cdot 1 = 1 \ge 0$

For $p \in \mathbb{R}^1[\mathbf{x} : \mathbf{y}] \cong \mathbb{R}^1[\mathbf{x}]$, there are p_0, p_1 independent of x_1, y_1 such that:

$$p = x_1 \cdot p_1 + y_1 \cdot p_0 \in \mathbb{R}^1[\mathbf{x} : \mathbf{y}] \iff q = x_1 \cdot p_1 + p_0 \in \mathbb{R}^1[\mathbf{x}]$$

This means: $\partial_{y_1} p$ on $\mathbb{R}^1[\mathbf{x} : \mathbf{y}]$ is equivalent to $q|_{x_1=0}$ on $\mathbb{R}^1[\mathbf{x}]$.

So:
$$R_{ij}(p) = \partial_{x_i} \partial_{y_j} p \cdot \partial_{y_i} \partial_{x_j} p - \partial_{x_i} \partial_{x_j} p \cdot \partial_{y_i} \partial_{y_j} p$$
 for $p \in \mathbb{R}^1[x : y]$.
 $\implies R_{ij}$ is $SL_2(\mathbb{C})$ -invariant. (Recall the *D* map from Grace's theorem.)

Therefore: Version of strong Rayleigh for all circular regions.

Open question: Strong Rayleigh is crucial to capacity bounds. Can one get similar bounds for other circular regions?

Proof of equivalence

- **2 Zero location:** *p* is real stable.
- 2 Linear restrictions: p(at + b) ∈ ℝ^{λ1+···+λn}[t] is real-rooted for all a ∈ ℝⁿ₊ (positive orthant) and b ∈ ℝⁿ.
- **③ Strong Rayleigh [Brändén '07]:** For p multiaffine ($\lambda = 1$),

$$R_{ij}(p) := \left. \left(\partial_{x_i} p \cdot \partial_{x_j} p - p \cdot \partial_{x_i} \partial_{x_j} p \right) \right|_{x_i = x_j = 0} \ge 0 \quad \text{for } x \in \mathbb{R}^n, \text{ all } i, j.$$

(1)
$$\implies$$
 (2): If $p(\boldsymbol{a}(\beta + \alpha i) + \boldsymbol{b}) = 0$ for $\alpha, \boldsymbol{a} > 0$, then p is not stable.
(2) \implies (1): Follows since $p(\boldsymbol{a} \cdot i + \boldsymbol{b}) \neq 0$ for all $\boldsymbol{a} > 0$.

(3) \implies (1): Exercise (we won't really need this direction). (1) \implies (3): By evaluating all variables except x_i, x_j , we can reduce to $p = ax_ix_j + bx_i + cx_j + d$. Evaluation preserves real stability (or $\equiv 0$) by evaluating $r + \epsilon i$ and limiting $\epsilon \to 0^+$. We then have

$$R_{ij}(p) = \partial_{x_i} p \cdot \partial_{x_j} p - p \cdot \partial_{x_i} \partial_{x_j} p \Big|_{x_i = x_j = 0} = bc - ad.$$

For $p = ax_ix_j + bx_i + cx_j + d$, need to show $bc \ge ad$.

Case 1: $a \neq 0$. First scale the whole polynomial so that a = 1. Now compute:

$$p(t-c,t-b) = (t-c)(t-b) + b(t-c) + c(t-b) + d = t^2 + d - bc.$$

By property (2), this is real-rooted $\implies d - bc \leq 0$ via discriminant.

Case 2: a = 0. Need to show $bc \ge 0$. If not, then bc < 0 and we have:

$$p(|c| \cdot i - b^{-1}d, |b| \cdot i) = (b|c| + c|b|)i + (d - d) = 0.$$

This contradicts the stability of *p*.

Outline

Grace's theorem and corollaries

- Grace's theorem
- Multiaffine polynomials and the Walsh coincidence theorem

2 Stability and multivariate polynomials

- Real stability
- The strong Rayleigh conditions
- Proof of equivalence

3 Stability preservers

- The Borcea-Brändén characterization
- The BB characterization for real stability
- The less important direction of the proof

Open problems

Stability preservers

Gauss-Lucas theorem: ∂_x preserves stability for univariate polynomials.

Corollary: ∂_{x_j} preserves (real) stability for multivariate polynomials. **Proof:** WLOG, j = n. Let $q(t) := p(a_1i + b_1, \dots, a_{n-1}i + b_{n-1}, t)$ for fixed $a \in \mathbb{R}^n_+$ and $b \in \mathbb{R}^n$, which is stable. We then have:

$$\partial_{x_n} p(a_1 i + b_1, \dots, a_n i + b_n) = \partial_t q(a_n i + b_n) \neq 0.$$

Corollary: Positive orthant directional derivatives preserve (real) stability. **Proof:** We want to prove that $\mathbf{a} \cdot \nabla p$ is stable for $\mathbf{a} \in \mathbb{R}^n_+$. Note first that $f(x_1, \ldots, x_n, t) := p(\mathbf{x} + \mathbf{a} \cdot t)$ is a stable polynomial, since $\mathbf{x} + \mathbf{a} \cdot t \in \mathcal{H}_+$ for $x_j, t \in \mathcal{H}_+$ and $\mathbf{a} \in \mathbb{R}^n_+$. So,

$$\partial_t f|_{t=0} = \boldsymbol{a} \cdot \nabla p(\boldsymbol{x} + \boldsymbol{a} \cdot 0) = \boldsymbol{a} \cdot \nabla p$$

is also stable.

What about other linear operators?

Jonathan Leake (TU Berlin)

The Borcea-Brändén characterization (stable)

Definition: The symbol of a linear operator $T : \mathbb{C}^{\lambda}[x] \to \mathbb{C}[x]$:

Symb^{$$\lambda$$}[T](\mathbf{x}, \mathbf{z}) := T $\left[\prod_{i=1}^{n} (x_i + z_i)^{\lambda_i}\right] = \sum_{\mathbf{0} \le \mu \le \lambda} {\lambda \choose \mu} \mathbf{z}^{\lambda - \mu} T[\mathbf{x}^{\mu}].$

Here T acts only on \boldsymbol{x} , $\boldsymbol{\mu} \leq \boldsymbol{\lambda}$ is entrywise, and $\binom{\boldsymbol{\lambda}}{\boldsymbol{\mu}} := \prod_{i} \binom{\lambda_{i}}{\mu_{i}}$.

Theorem (Borcea-Brändén '09)

For a given linear operator $T : \mathbb{C}^{\lambda}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]$, we have that T preserves stability (allowing $\equiv 0$) if and only if one of the following holds:

- Symb^{λ}[T](x, z) is stable.
- Interimage of T is a one-dimensional space of stable polynomials.

Conceptual takeaway: T preserves stability "iff" its symbol is stable.

Proof of the stable BB characterization

Most important: Symb^{λ}[T](x, z) is stable implies T preserves stability. (We'll come back to the other direction.)

Recall: Multiaffine stability equivalent to more general cases by Walsh coincidence theorem. **So let's prove it for multiaffine first.**

Proof: Up to positive scalar, for any $p \in \mathbb{C}^1[t]$ we have

$$T[p](\mathbf{x}) = \prod_{i=1}^{n} (\partial_{z_i} + \partial_{t_i}) \bigg|_{\mathbf{z}=\mathbf{t}=\mathbf{0}} \left[\text{Symb}^1[T](\mathbf{x}, \mathbf{z}) \cdot p(\mathbf{t}) \right].$$

Why? $\prod_{i=1}^{n} (\partial_{z_i} + \partial_{t_i})|_{z=t=0} [f(z) \cdot g(t)]$ is a bilinear form on polynomials. Symb¹ is then the corresponding induced map between linear operators and polynomials, as discussed above.

Since Symb¹[T](x, z) · p(t) is stable, and since ($\partial_{z_i} + \partial_{t_i}$) and evaluating variables at 0 both preserve stability, we have that T[p](x) is also stable.

More general polynomials

Proof is done for multiaffine polynomials. What about higher degree? Use polarization: $p \in \mathbb{C}^{\lambda}[x]$ is stable iff $Pol[p] \in \mathbb{C}^{1}[x]$ is.

Last piece: How does polarization relate to Symb? Easy answer!

$$\operatorname{Pol}\left[\operatorname{Symb}^{\lambda}[T]\right] = (\operatorname{Pol} \circ T) \left[\prod_{i=1}^{n} (x_{i} + z_{i})^{\lambda_{i}}\right]$$
$$= \left(\operatorname{Pol} \circ T \circ \operatorname{Pol}^{-1}\right) \left[\prod_{i,j} (x_{i,j} + z_{i,j})\right]$$
$$= \operatorname{Symb}^{1}\left[\operatorname{Pol} \circ T \circ \operatorname{Pol}^{-1}\right].$$

Finally: Symb^{λ}[*T*] is stable iff Pol [Symb^{λ}[*T*]] = Symb¹ [Pol $\circ T \circ Pol^{-1}$] is stable iff (Pol $\circ T \circ Pol^{-1}$) preserves stability iff *T* preserves stability.

Theorem (Borcea-Brändén '09)

For a given linear operator $T : \mathbb{R}^{\lambda}[\mathbf{x}] \to \mathbb{R}[\mathbf{x}]$, we have that T preserves real stability (allowing $\equiv 0$) if and only if one of the following holds:

- Symb^{λ}[*T*](*x*, *z*) is real stable.
- **2** Symb^{λ}[*T*](*x*, -*z*) is real stable.
- **③** The image of T is a two-dimensional space of real stable polynomials.

Two conditions now? Real stable iff \mathcal{H}^n_+ -stable iff \mathcal{H}^n_- -stable.

- Symb^{λ}[*T*](*x*, *z*): preserves (real) stability by previous theorem.
- Symb^{λ}[*T*](*x*, -*z*): maps \mathcal{H}^{n}_{+} -stable to \mathcal{H}^{n}_{-} -stable by prev. theorem.

Another option: Symb^{λ}[T]($x \cdot z, 1$) = $z^{\lambda} \cdot Symb^{\lambda}$ [T](x, z^{-1}) where the product $x \cdot z$ is entrywise. This one is useful for capacity.

The other direction of the BB characterization

For the complex case: Suppose $Symb^{1}[T](x, z)$ is not stable. Recall:

$$T[p](\mathbf{x}) = \prod_{i=1}^{n} (\partial_{z_i} + \partial_{t_i}) \left[\text{Symb}^1[T](\mathbf{x}, \mathbf{z}) \cdot p(\mathbf{t}) \right].$$

Pick $\mathbf{x}, \mathbf{\alpha} \in \mathcal{H}_{+}^{n}$ such that Symb¹[T]($\mathbf{x}, \mathbf{\alpha}$) = 0, and define the \mathcal{H}_{+}^{n} -stable polynomial $p(\mathbf{t}) := \prod_{i=1}^{n} (t_{i} + \alpha_{i})$ to get:

$$T[p](\mathbf{x}) = \prod_{i=1}^{n} (\partial_{z_i} + \partial_{t_i}) \left[\mathsf{Symb}^1[T](\mathbf{x}, \mathbf{z}) \cdot p(\mathbf{t}) \right] = \mathsf{Symb}^1[T](\mathbf{x}, \alpha) = 0.$$

So either T does not preserve stability or $T[p] \equiv 0$. If T preserves stability, then $T[B_{\epsilon}(p)]$ is an open set containing 0. By scaling, this implies the whole image of T consists of stable polynomials.

Fact: A vector space of stable polynomials is of dimension at most 1. **Proof:** Exercise. Is there some algebraic geometry way to see this?

Jonathan Leake (TU Berlin)

The other direction of the BB characterization

For the real case: Need a link between real stability and complex stability.

Recall: In the univariate case, the following are equivalent.

- (Interlacing roots) $p \ll q$ or $q \ll p$.
- **2** (Hermite-Kakeya-Obreschkoff) ap + bq is real-rooted for all $a, b \in \mathbb{R}$.
- **(Hermite-Biehler)** p + iq is either \mathcal{H}_+ -stable or \mathcal{H}_- -stable.

Fact: This extends to multivariate stable and real stable polynomials.

We write $p \ll q$ if $p(\boldsymbol{a} \cdot t + \boldsymbol{b}) \ll q(\boldsymbol{a} \cdot t + \boldsymbol{b})$ for all $\boldsymbol{a} \in \mathbb{R}^n_+$ and $\boldsymbol{b} \in \mathbb{R}^n$. Some interlacing property of the real varieties.

Idea: T preserves real stability $\implies T[ap + bq] = aT[p] = bT[q]$ real stable for all $a, b \in \mathbb{R} \implies T[p] + iT[q] = T[p + iq]$ is \mathcal{H}_+ - or \mathcal{H}_- -stable.

Now: Use the previous slide, plus HKO \implies two-dimensional condition.

Outline

Grace's theorem and corollaries

- Grace's theorem
- Multiaffine polynomials and the Walsh coincidence theorem

2 Stability and multivariate polynomials

- Real stability
- The strong Rayleigh conditions
- Proof of equivalence

Stability preservers

- The Borcea-Brändén characterization
- The BB characterization for real stability
- The less important direction of the proof

Open problems

Apolarity theorem for $SU_n(\mathbb{C})$ form

Grace's theorem: Non-vanishing for $SL_2(\mathbb{C})$ -invariant bilinear form. Another way to prove the BB characterization is by first proving Grace's theorem for $SL_2(\mathbb{C})^n$. (Recall the product of binomial coeff. in Symb.)

Can we extend this beyond $SL_2(\mathbb{C})$? There isn't quite an $SL_n(\mathbb{C})$ -invariant form, but there is an $SU_n(\mathbb{C})$ -invariant form for polynomials $p \in \mathbb{C}_h^d[x_1 : \cdots : x_n]$ with $p(x) = \sum_{\mu} p_{\mu} \mathbf{x}^{\mu}$:

$$\langle p,q
angle^d:=\sum_{|\mu|=d} {d \choose \mu}^{-1} p_\mu q_\mu.$$

Open question: For what classes of polynomials do we get a Grace-type theorem for this bilinear form? (**Also:** Gurvits' capacity conjecture.)

Alternative form:
$$\langle p,q\rangle^d = D^d(p(\mathbf{x})q(\mathbf{z}))$$
 for $D := \sum_{i=1}^n \partial_{x_i}\partial_{z_i}$.