Multivariate Polynomials

Polynomial Capacity: Theory, Applications, Generalizations

Jonathan Leake
Technische Universität Berlin

November 12th, 2020

Notation

"Usual polynomials":

- $\mathbb{C}[x]:=$ v.s. of complex polynomials in one variable.
- $\mathbb{C}^{d}[x]:=\mathrm{v}$.s. of polynomials of degree at most d.
- For $p \in \mathbb{C}^{d}[x]$, we write $p(x)=\sum_{k=0}^{d} p_{k} x^{k}$.
- monic $:=$ the leading coeffcient is 1 .
- $\operatorname{deg}(p):=$ the degree of the polynomial.
- $\lambda(p):=$ the roots/zeros of the polynomial, counting multiplicity.
- $\frac{d}{d x}=\frac{\partial}{\partial x}=\partial_{x}:=$ derivative with respect to x.

Polynomials with zeros in projective space:

- $\mathbb{C}_{h}^{d}[x: y]:=$ v.s. of bivariate homogeneous polynomials of degree d.
- For $p \in \mathbb{C}_{h}^{d}[x: y]$, we write $p(x: y)=\sum_{k=0}^{d} p_{k} x^{k} y^{d-k}$.
- $\mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\}:=$ complex projective line, or Riemann sphere.
- $\mathrm{SL}_{2}(\mathbb{C}):=2 \times 2$ invertible complex matrices, det $=1$.
- $\partial_{y}:=$ derivative with respect to y.

Recall: The big three

The geometry of polynomials is generally an investigation of the connections between the various properties of polynomials:

- Algebraic, via the roots/zeros of the polynomial.
- Combinatorial, via the coefficients of the polynomial.
- Analytic, via the evaluations of the polynomial.

Why do we care? We use features of the interplay between these three to prove facts about mathematical objects which a priori have nothing to do with polynomials.

Typical method:

(1) Encode some object as a polynomial which has some nice properties.
(2) Apply operations to that polynomial which preserve those properties.
(3) Extract information at the end which relates back to the object.

Outline

(1) Grace's theorem and corollaries

- Grace's theorem
- Multiaffine polynomials and the Walsh coincidence theorem
(2) Stability and multivariate polynomials
- Real stability
- The strong Rayleigh conditions
- Proof of equivalence
(3) Stability preservers
- The Borcea-Brändén characterization
- The BB characterization for real stability
- The less important direction of the proof
(4) Open problems

Outline

(1) Grace's theorem and corollaries

- Grace's theorem
- Multiaffine polynomials and the Walsh coincidence theorem
(2) Stability and multivariate polynomials
- Real stability
- The strong Rayleigh conditions
- Proof of equivalence
(3) Stability preservers
- The Borcea-Brändén characterization
- The BB characterization for real stability
- The less important direction of the proof
(9) Open problems

Laguerre's theorem

Recall Laguerre's theorem: If
(1) $C \subset \mathbb{C P}^{1}$ is a circular region (disc, half-plane, complement of disc),
(2) $p \in \mathbb{C}_{h}^{d}[x: y]$ has all its roots in C,
(3) $(a: b) \in \mathbb{C P}^{1}$ is not in C,
then $\left(a \partial_{x}+b \partial_{y}\right) p$ has all its roots in C.
"Usual polynomials" version: If
(1) $C \subset \mathbb{C}$ is a circular region,
(2) $p \in \mathbb{C}^{d}[x]$ has all its roots in $C(d-\operatorname{deg}(p)$ counts roots at $\infty)$,
(3) $a \in \mathbb{C}$ is not in C,
then $\left(a \partial_{x}+\partial_{y}\right) p:=d \cdot p(x)-(x-a) \cdot p^{\prime}(x)$ has all its roots in C.
Idea: $a \partial_{x}+b \partial_{y}=\phi^{-1} \circ \partial_{x} \circ \phi=$ rotate roots in $\mathbb{C P}^{1}$ via $\phi \in \mathrm{SL}_{2}(\mathbb{C})$, then take derivative and apply Gauss-Lucas, then rotate roots back.
Also: $\left(a \partial_{x}+b \partial_{y}\right) p \not \equiv 0$, or else implies $p(a: b)=0$.

Grace's theorem

First: If $\left(r_{i}: s_{i}\right) \notin C$ and $\left(a_{1}: b_{1}\right) \in C$, then

$$
f(x: y)=\left(a_{1} \partial_{x}+b_{1} \partial_{y}\right) \prod_{i=1}^{d}\left(s_{i} x-r_{i} y\right) \in \mathbb{C}_{h}^{d-1}[x: y]
$$

has all roots outside of C.
Next: If $\left(r_{i}: s_{i}\right) \notin C$ and $\left(a_{i}: b_{i}\right) \in C$, then

$$
f(x: y)=\prod_{i=1}^{d}\left(a_{i} \partial_{x}+b_{i} \partial_{y}\right) \prod_{i=1}^{d}\left(s_{i} x-r_{i} y\right) \in \mathbb{C}_{h}^{0}[x: y]
$$

has all roots outside of $C . \Longrightarrow f \not \equiv 0$.
Grace's theorem: If $p, q \in \mathbb{C}_{h}^{d}[x: y]$ are such that p has all roots in C and q has no roots in C, then $\langle p, q\rangle^{d}:=p\left(\partial_{y}:-\partial_{x}\right) q(x: y) \neq 0$.
Aside: $\langle p, q\rangle^{d}=D^{d}(p(x: y) q(z: w))$ for $D=\partial_{x} \partial_{w}-\partial_{y} \partial_{z}$, where D is $\mathrm{SL}_{2}(\mathbb{C})$-invariant $\Longrightarrow\langle\cdot, \cdot\rangle^{d}$ is unique $\mathrm{SL}_{2}(\mathbb{C})$-invariant bilinear form.

Grace's theorem: Why do we care?

Bilinear form $\langle\cdot, \cdot\rangle^{d}$ is non-zero when roots are separated. So what?
Many classical theorems are proven using Grace's theorem. How?
First: We can interpret the bilinear form as a choice of isomorphism between $\mathbb{C}_{h}^{d}[x: y]$ and its dual space $\mathbb{C}_{h}^{d}[x: y]^{*}$ via $p \longleftrightarrow\langle p, \cdot\rangle^{d}$.

Next: Induce a map from linear operators on polynomials to polynomials in more variables. Letting \mathcal{L}_{d} denote the space of operators,
$\mathcal{L}_{d} \cong \mathbb{C}_{h}^{d}[x: y] \otimes \mathbb{C}_{h}^{d}[x: y]^{*} \stackrel{\downarrow}{\cong} \mathbb{C}_{h}^{d}[x: y] \otimes \mathbb{C}_{h}^{d}[x: y] \cong \mathbb{C}_{h}^{(d, d)}[x: y, z: w]$.
Denoting this by Symb ${ }^{d}: \mathcal{L}_{d} \xrightarrow{\sim} \mathbb{C}_{h}^{(d, d)}[x: y, z: w]$ gives:

$$
T[p](x: y)=\left\langle\operatorname{Symb}^{d}[T](x: y, z: w), p(z: w)\right\rangle^{d}
$$

Finally: Zero location of p and $\operatorname{Symb}^{d}[T]$ implies non-vanishing of $T[p]$.

Multivariate polynomials?

Now: Multivariate theory

- The idea of Symb ${ }^{d}$ requires multivariate polynomials.
- Multivariate allows more direct connection to mathematical objects.
- E.g.: Matching polynomial with one variable per vertex.
- Problem: No analogue to the fundamental theorem of algebra.
- Problem: Zeros cannot be contained to some compact region.

Hint: Given $p \in \mathbb{C}_{h}^{d}[x: y]$ with roots $\left(r_{i}: s_{i}\right) \notin C$, define

$$
P\left(z_{1}: w_{1}, \ldots, z_{d}: w_{d}\right):=\frac{1}{d!} \prod_{i=1}^{d}\left(z_{i} \partial_{x}+w_{i} \partial_{y}\right) \prod_{i=1}^{d}\left(s_{i} x-r_{i} y\right)
$$

P is a multivariate polynomial of degree one in each variable $\left(z_{i}: w_{i}\right)$.
Grace's theorem: P has no zeros in $C \times \cdots \times C$.

Walsh coincidence theorem

The polarization of a polynomial p :

$$
P\left(z_{1}: w_{1}, \ldots, z_{d}: w_{d}\right):=\frac{1}{d!} \prod_{i=1}^{d}\left(z_{i} \partial_{x}+w_{i} \partial_{y}\right) \prod_{i=1}^{d}\left(s_{i} x-r_{i} y\right)
$$

Properties:

- P is symmetric.
- P is of degree one in each variable (multiaffine).
- $P(z: w, \ldots, z: w)=p(z: w)$, via product rule:

$$
\left(z \partial_{x}+w \partial_{y}\right) \prod_{i=1}^{d}\left(s_{i} x-r_{i} y\right)=\sum_{i=1}^{d}\left(s_{i} z-r_{i} w\right) \prod_{j \neq i}\left(s_{j} x-r_{j} y\right)=\cdots
$$

- The unique polynomial with these properties.

Walsh coincidence theorem: A polynomial p has no roots in C if and only if its polarization has no roots in C^{d}.

Multiaffine equivalence

Walsh coincidence theorem for "usual polynomials":

$$
p(x)=\sum_{k=0}^{d}\binom{d}{k} \tilde{p}_{k} x^{k} \quad \Longleftrightarrow \quad P(\boldsymbol{x})=\sum_{\substack{[d] \\ k \\ k}} \tilde{p}_{|S|} X^{S}=\sum_{k=0}^{d} \sum_{|S|=k} \tilde{p}_{k} \boldsymbol{x}^{S}
$$

Stability in a circular region is preserved (stability $=$ no zeros).
Stability-preserving map between $\mathbb{C}^{d}[x]$ and $\mathbb{C}^{(1, \ldots, 1)}\left[x_{1}, \ldots, x_{d}\right]$ (or equivalently between $\mathbb{C}_{h}^{d}[x: y]$ and $\left.\mathbb{C}_{h}^{\left(1^{d}\right)}[\boldsymbol{x}: \boldsymbol{y}]\right)$.

More variables: $\mathbb{C}^{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}\left[x_{1}, \ldots, x_{n}\right] \Longleftrightarrow \mathbb{C}^{\left(\mathbf{1}^{\lambda_{1}}, \ldots, \mathbf{1}^{\lambda_{n}}\right)}\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right]$.
Conceptual takeaway: Stability properties for a space of polynomials equivalent to properties on some isomorphic symmetric multiaffine space.

Outline

(1) Grace's theorem and corollaries

- Grace's theorem
- Multiaffine polynomials and the Walsh coincidence theorem
(2) Stability and multivariate polynomials
- Real stability
- The strong Rayleigh conditions
- Proof of equivalence
(3) Stability preservers
- The Borcea-Brändén characterization
- The BB characterization for real stability
- The less important direction of the proof

4 Open problems

Real stability

Multivariate polynomial spaces: $\mathbb{C}^{\boldsymbol{\lambda}}[\boldsymbol{x}]=\mathbb{C}^{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}\left[x_{1}, \ldots, x_{n}\right]=$ set of all polynomials in variables x_{1}, \ldots, x_{n} of degree at most λ_{i} in x_{i} for all i.

Note: From now on, mainly work with "usual polynomial" spaces, but remember that everything is equivalent.

Very important definition: A polynomial $p \in \mathbb{C}^{\lambda}[x]$ is stable if:

$$
x_{1}, \ldots, x_{n} \in \mathcal{H}_{+}=\text {upper half-plane } \Longrightarrow p\left(x_{1}, \ldots, x_{n}\right) \neq 0
$$

If we further have $p \in \mathbb{R}^{\lambda}[x]$, then p is real stable.
E.g.: Matching poly., spanning tree poly., $\operatorname{det}\left(\sum_{i} A_{i} x_{i}\right)$ for A_{i} PSD.

Walsh coincidence theorem says p is stable iff the polarization P is.
Can always keep in mind any other circular region C and use C^{n}-stable. E.g.: \mathcal{H}_{+}^{n}-stable and \mathcal{H}_{-}^{n}-stable for upper and lower half-plane stability.

Real stable: the "right" generalization of real-rooted

Fact: If $p \in \mathbb{R}^{d}[x]$ is univariate, then p is real stable iff p is real-rooted. Proof: For real polynomials, non-real zeros come in conjugate pairs.

Equivalent properties for $p \in \mathbb{R}^{\lambda}[\boldsymbol{x}]$:
(1) Zero location: p is real stable.
(2) Linear restrictions: $p(\boldsymbol{a} t+\boldsymbol{b}) \in \mathbb{R}^{\lambda_{1}+\cdots+\lambda_{n}}[t]$ is real-rooted for all $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$ (positive orthant) and $\boldsymbol{b} \in \mathbb{R}^{n}$.
(3) Strong Rayleigh [Brändén '07]: For p multiaffine $(\boldsymbol{\lambda}=\mathbf{1})$,

$$
R_{i j}(p):=\left.\left(\partial_{x_{i}} p \cdot \partial_{x_{j}} p-p \cdot \partial_{x_{i}} \partial_{x_{j}} p\right)\right|_{x_{i}=x_{j}=0} \geq 0 \quad \text { for } x \in \mathbb{R}^{n}, \text { all } i, j
$$

Example: $p\left(x_{1}, x_{2}\right)=x_{1} x_{2}-1$.
(1) $x_{1}, x_{2} \in \mathcal{H}_{+} \Longrightarrow x_{1} x_{2} \neq 1 \Longrightarrow x_{1} x_{2}-1 \neq 0$
(2) $\left(a_{1} t+b_{1}\right)\left(a_{2} t+b_{2}\right)-1=a_{1} a_{2} t^{2}+\left(a_{1} b_{2}+a_{2} b_{1}\right) t+\left(b_{1} b_{2}-1\right)$
$\Longrightarrow\left(a_{1} b_{2}+a_{2} b_{1}\right)^{2}-4 a_{1} a_{2}\left(b_{1} b_{2}-1\right)=\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}+4 a_{1} a_{2} \geq 0$
(3) $i=1, j=2 \Longrightarrow x_{2} \cdot x_{1}-\left(x_{1} x_{2}-1\right) \cdot 1=1 \geq 0$

An aside on the strong Rayleigh conditions

For $p \in \mathbb{R}^{\mathbf{1}}[\boldsymbol{x}: \boldsymbol{y}] \cong \mathbb{R}^{\mathbf{1}}[\boldsymbol{x}]$, there are p_{0}, p_{1} independent of x_{1}, y_{1} such that:

$$
p=x_{1} \cdot p_{1}+y_{1} \cdot p_{0} \in \mathbb{R}^{\mathbf{1}}[\mathbf{x}: \boldsymbol{y}] \Longleftrightarrow q=x_{1} \cdot p_{1}+p_{0} \in \mathbb{R}^{\mathbf{1}}[\mathbf{x}]
$$

This means: $\partial_{y_{1}} p$ on $\mathbb{R}^{\mathbf{1}}[\boldsymbol{x}: \boldsymbol{y}]$ is equivalent to $\left.q\right|_{x_{1}=0}$ on $\mathbb{R}^{\mathbf{1}}[\boldsymbol{x}]$.
So: $R_{i j}(p)=\partial_{x_{i}} \partial_{y_{j}} p \cdot \partial_{y_{i}} \partial_{x_{j}} p-\partial_{x_{i}} \partial_{x_{j}} p \cdot \partial_{y_{i}} \partial_{y_{j}} p$ for $p \in \mathbb{R}^{\mathbf{1}}[\boldsymbol{x}: \boldsymbol{y}]$.
$\Longrightarrow R_{i j}$ is $\mathrm{SL}_{2}(\mathbb{C})$-invariant. (Recall the D map from Grace's theorem.)
Therefore: Version of strong Rayleigh for all circular regions.
Open question: Strong Rayleigh is crucial to capacity bounds. Can one get similar bounds for other circular regions?

Proof of equivalence

(1) Zero location: p is real stable.
(2) Linear restrictions: $p(\boldsymbol{a} t+\boldsymbol{b}) \in \mathbb{R}^{\lambda_{1}+\cdots+\lambda_{n}}[t]$ is real-rooted for all $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$ (positive orthant) and $\boldsymbol{b} \in \mathbb{R}^{n}$.
(3) Strong Rayleigh [Brändén '07]: For p multiaffine $(\boldsymbol{\lambda}=1)$,

$$
R_{i j}(p):=\left.\left(\partial_{x_{i}} p \cdot \partial_{x_{j}} p-p \cdot \partial_{x_{i}} \partial_{x_{j}} p\right)\right|_{x_{i}=x_{j}=0} \geq 0 \quad \text { for } x \in \mathbb{R}^{n}, \text { all } i, j
$$

(1) \Longrightarrow (2): If $p(\boldsymbol{a}(\beta+\alpha i)+\boldsymbol{b})=0$ for $\alpha, \boldsymbol{a}>0$, then p is not stable.
$(2) \Longrightarrow(1)$: Follows since $p(\boldsymbol{a} \cdot i+\boldsymbol{b}) \neq 0$ for all $\boldsymbol{a}>0$.
$(3) \Longrightarrow(1)$: Exercise (we won't really need this direction).
$(1) \Longrightarrow(3)$: By evaluating all variables except x_{i}, x_{j}, we can reduce to $p=a x_{i} x_{j}+b x_{i}+c x_{j}+d$. Evaluation preserves real stability (or $\equiv 0$) by evaluating $r+\epsilon i$ and limiting $\epsilon \rightarrow 0^{+}$. We then have

$$
R_{i j}(p)=\partial_{x_{i}} p \cdot \partial_{x_{j}} p-\left.p \cdot \partial_{x_{i}} \partial_{x_{j}} p\right|_{x_{i}=x_{j}=0}=b c-a d
$$

Proof equivalence (continued)

For $p=a x_{i} x_{j}+b x_{i}+c x_{j}+d$, need to show $b c \geq a d$.
Case 1: $a \neq 0$. First scale the whole polynomial so that $a=1$. Now compute:
$p(t-c, t-b)=(t-c)(t-b)+b(t-c)+c(t-b)+d=t^{2}+d-b c$.
By property (2), this is real-rooted $\Longrightarrow d-b c \leq 0$ via discriminant.
Case 2: $a=0$. Need to show $b c \geq 0$. If not, then $b c<0$ and we have:

$$
p\left(|c| \cdot i-b^{-1} d,|b| \cdot i\right)=(b|c|+c|b|) i+(d-d)=0 .
$$

This contradicts the stability of p.

Outline

(1) Grace's theorem and corollaries

- Grace's theorem
- Multiaffine polynomials and the Walsh coincidence theorem
(2) Stability and multivariate polynomials
- Real stability
- The strong Rayleigh conditions
- Proof of equivalence
(3) Stability preservers
- The Borcea-Brändén characterization
- The BB characterization for real stability
- The less important direction of the proof
(4) Open problems

Stability preservers

Gauss-Lucas theorem: ∂_{\times}preserves stability for univariate polynomials.
Corollary: $\partial_{x_{j}}$ preserves (real) stability for multivariate polynomials. Proof: WLOG, $j=n$. Let $q(t):=p\left(a_{1} i+b_{1}, \ldots, a_{n-1} i+b_{n-1}, t\right)$ for fixed $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$ and $\boldsymbol{b} \in \mathbb{R}^{n}$, which is stable. We then have:

$$
\partial_{x_{n}} p\left(a_{1} i+b_{1}, \ldots, a_{n} i+b_{n}\right)=\partial_{t} q\left(a_{n} i+b_{n}\right) \neq 0
$$

Corollary: Positive orthant directional derivatives preserve (real) stability. Proof: We want to prove that $\boldsymbol{a} \cdot \nabla p$ is stable for $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$. Note first that $f\left(x_{1}, \ldots, x_{n}, t\right):=p(\boldsymbol{x}+\boldsymbol{a} \cdot t)$ is a stable polynomial, since $\boldsymbol{x}+\boldsymbol{a} \cdot t \in \mathcal{H}_{+}$ for $x_{j}, t \in \mathcal{H}_{+}$and $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$. So,

$$
\left.\partial_{t} f\right|_{t=0}=\boldsymbol{a} \cdot \nabla p(\boldsymbol{x}+\boldsymbol{a} \cdot 0)=\boldsymbol{a} \cdot \nabla p
$$

is also stable.
What about other linear operators?

The Borcea-Brändén characterization (stable)

Definition: The symbol of a linear operator $T: \mathbb{C}^{\lambda}[x] \rightarrow \mathbb{C}[x]$:

$$
\operatorname{Symb}^{\lambda}[T](x, z):=T\left[\prod_{i=1}^{n}\left(x_{i}+z_{i}\right)^{\lambda_{i}}\right]=\sum_{0 \leq \boldsymbol{\mu} \leq \boldsymbol{\lambda}}\binom{\boldsymbol{\lambda}}{\boldsymbol{\mu}} z^{\boldsymbol{\lambda}-\mu} T\left[\boldsymbol{x}^{\mu}\right]
$$

Here T acts only on $\boldsymbol{x}, \boldsymbol{\mu} \leq \boldsymbol{\lambda}$ is entrywise, and $\binom{\boldsymbol{\lambda}}{\boldsymbol{\mu}}:=\prod_{i}\binom{\lambda_{i}}{\mu_{i}}$.

Theorem (Borcea-Brändén '09)

For a given linear operator $T: \mathbb{C}^{\lambda}[\mathbf{x}] \rightarrow \mathbb{C}[\boldsymbol{x}]$, we have that T preserves stability (allowing $\equiv 0$) if and only if one of the following holds:
(1) Symb ${ }^{\lambda}[T](\boldsymbol{x}, \boldsymbol{z})$ is stable.
(2) The image of T is a one-dimensional space of stable polynomials.

Conceptual takeaway: T preserves stability "iff" its symbol is stable.

Proof of the stable $B B$ characterization

Most important: Symb ${ }^{\lambda}[T](\boldsymbol{x}, \boldsymbol{z})$ is stable implies T preserves stability. (We'll come back to the other direction.)

Recall: Multiaffine stability equivalent to more general cases by Walsh coincidence theorem. So let's prove it for multiaffine first.

Proof: Up to positive scalar, for any $p \in \mathbb{C}^{\mathbf{1}}[\boldsymbol{t}]$ we have

$$
T[p](\boldsymbol{x})=\left.\prod_{i=1}^{n}\left(\partial_{z_{i}}+\partial_{t_{i}}\right)\right|_{\boldsymbol{z}=\boldsymbol{t}=0}\left[\operatorname{Symb}^{\mathbf{1}}[T](\boldsymbol{x}, \boldsymbol{z}) \cdot p(\boldsymbol{t})\right]
$$

Why? $\left.\prod_{i=1}^{n}\left(\partial_{z_{i}}+\partial_{t_{i}}\right)\right|_{z=\boldsymbol{t}=0}[f(\boldsymbol{z}) \cdot g(\boldsymbol{t})]$ is a bilinear form on polynomials. Symb ${ }^{1}$ is then the corresponding induced map between linear operators and polynomials, as discussed above.

Since $\operatorname{Symb}^{\mathbf{1}}[T](\boldsymbol{x}, \boldsymbol{z}) \cdot p(\boldsymbol{t})$ is stable, and since $\left(\partial_{z_{i}}+\partial_{t_{i}}\right)$ and evaluating variables at 0 both preserve stability, we have that $T[p](\boldsymbol{x})$ is also stable.

More general polynomials

Proof is done for multiaffine polynomials. What about higher degree?
Use polarization: $p \in \mathbb{C}^{\lambda}[\boldsymbol{x}]$ is stable iff $\operatorname{Pol}[p] \in \mathbb{C}^{\mathbf{1}}[\boldsymbol{x}]$ is.
Last piece: How does polarization relate to Symb? Easy answer!

$$
\begin{aligned}
\operatorname{Pol}\left[\operatorname{Symb}^{\lambda}[T]\right] & =(\operatorname{Pol} \circ T)\left[\prod_{i=1}^{n}\left(x_{i}+z_{i}\right)^{\lambda_{i}}\right] \\
& =\left(\operatorname{Pol} \circ T \circ \operatorname{Pol}^{-1}\right)\left[\prod_{i, j}\left(x_{i, j}+z_{i, j}\right)\right] \\
& =\operatorname{Symb}^{\mathbf{1}}\left[\operatorname{Pol} \circ T \circ \mathrm{Pol}^{-1}\right] .
\end{aligned}
$$

Finally: $\operatorname{Symb}^{\boldsymbol{\lambda}}[T]$ is stable iff $\mathrm{Pol}\left[\mathrm{Symb}^{\boldsymbol{\lambda}}[T]\right]=\mathrm{Symb}^{\mathbf{1}}\left[\mathrm{Pol} \circ T \circ \mathrm{Pol}^{-1}\right]$ is stable iff $\left(\mathrm{Pol} \circ T \circ \mathrm{Pol}^{-1}\right)$ preserves stability iff T preserves stability.

The BB characterization (real stable)

Theorem (Borcea-Brändén '09)

For a given linear operator $T: \mathbb{R}^{\boldsymbol{\lambda}}[\boldsymbol{x}] \rightarrow \mathbb{R}[\boldsymbol{x}]$, we have that T preserves real stability (allowing $\equiv 0$) if and only if one of the following holds:
(1) Symb $^{\lambda}[T](x, z)$ is real stable.
(2) Symb ${ }^{\lambda}[T](\boldsymbol{x},-\boldsymbol{z})$ is real stable.
(3) The image of T is a two-dimensional space of real stable polynomials.

Two conditions now? Real stable iff \mathcal{H}_{+}^{n}-stable iff \mathcal{H}_{-}^{n}-stable.
(1) Symb $^{\lambda}[T](x, z)$: preserves (real) stability by previous theorem.
(2) $\operatorname{Symb}^{\lambda}[T](\boldsymbol{x},-\boldsymbol{z})$: maps \mathcal{H}_{+}^{n}-stable to \mathcal{H}_{-}^{n}-stable by prev. theorem.

Another option: $\operatorname{Symb}^{\lambda}[T](\boldsymbol{x} \cdot \boldsymbol{z}, \mathbf{1})=\boldsymbol{z}^{\lambda} \cdot \operatorname{Symb}^{\lambda}[T]\left(\boldsymbol{x}, \boldsymbol{z}^{-1}\right)$ where the product $\boldsymbol{x} \cdot \boldsymbol{z}$ is entrywise. This one is useful for capacity.

The other direction of the BB characterization

For the complex case: Suppose $\operatorname{Symb}^{\mathbf{1}}[T](\boldsymbol{x}, \boldsymbol{z})$ is not stable. Recall:

$$
T[p](\boldsymbol{x})=\prod_{i=1}^{n}\left(\partial_{z_{i}}+\partial_{t_{i}}\right)\left[\operatorname{Symb}^{\mathbf{1}}[T](\boldsymbol{x}, \boldsymbol{z}) \cdot p(\boldsymbol{t})\right]
$$

Pick $\boldsymbol{x}, \boldsymbol{\alpha} \in \mathcal{H}_{+}^{n}$ such that $\operatorname{Symb}^{\mathbf{1}}[T](\boldsymbol{x}, \boldsymbol{\alpha})=0$, and define the \mathcal{H}_{+}^{n}-stable polynomial $p(\boldsymbol{t}):=\prod_{i=1}^{n}\left(t_{i}+\alpha_{i}\right)$ to get:

$$
T[p](\boldsymbol{x})=\prod_{i=1}^{n}\left(\partial_{z_{i}}+\partial_{t_{i}}\right)\left[\operatorname{Symb}^{1}[T](\boldsymbol{x}, \boldsymbol{z}) \cdot p(\boldsymbol{t})\right]=\operatorname{Symb}^{1}[T](\boldsymbol{x}, \boldsymbol{\alpha})=0
$$

So either T does not preserve stability or $T[p] \equiv 0$. If T preserves stability, then $T\left[B_{\epsilon}(p)\right]$ is an open set containing 0 . By scaling, this implies the whole image of T consists of stable polynomials.

Fact: A vector space of stable polynomials is of dimension at most 1 . Proof: Exercise. Is there some algebraic geometry way to see this?

The other direction of the BB characterization

For the real case: Need a link between real stability and complex stability.
Recall: In the univariate case, the following are equivalent.
(1) (Interlacing roots) $p \ll q$ or $q \ll p$.
(2) (Hermite-Kakeya-Obreschkoff) $a p+b q$ is real-rooted for all $a, b \in \mathbb{R}$.
(3) (Hermite-Biehler) $p+i q$ is either \mathcal{H}_{+}-stable or \mathcal{H}_{-}-stable.

Fact: This extends to multivariate stable and real stable polynomials.
We write $p \ll q$ if $p(\boldsymbol{a} \cdot t+\boldsymbol{b}) \ll q(\boldsymbol{a} \cdot t+\boldsymbol{b})$ for all $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$ and $\boldsymbol{b} \in \mathbb{R}^{n}$. Some interlacing property of the real varieties.

Idea: T preserves real stability $\Longrightarrow T[a p+b q]=a T[p]=b T[q]$ real stable for all $a, b \in \mathbb{R} \Longrightarrow T[p]+i T[q]=T[p+i q]$ is \mathcal{H}_{+}or \mathcal{H}_{-}-stable.

Now: Use the previous slide, plus $\mathrm{HKO} \Longrightarrow$ two-dimensional condition.

Outline

(1) Grace's theorem and corollaries

- Grace's theorem
- Multiaffine polynomials and the Walsh coincidence theorem
(2) Stability and multivariate polynomials
- Real stability
- The strong Rayleigh conditions
- Proof of equivalence
(3) Stability preservers
- The Borcea-Brändén characterization
- The BB characterization for real stability
- The less important direction of the proof
(4) Open problems

Apolarity theorem for $\mathrm{SU}_{n}(\mathbb{C})$ form

Grace's theorem: Non-vanishing for $\mathrm{SL}_{2}(\mathbb{C})$-invariant bilinear form. Another way to prove the BB characterization is by first proving Grace's theorem for $\mathrm{SL}_{2}(\mathbb{C})^{n}$. (Recall the product of binomial coeff. in Symb.)

Can we extend this beyond $\mathrm{SL}_{2}(\mathbb{C})$? There isn't quite an $\mathrm{SL}_{n}(\mathbb{C})$-invariant form, but there is an $\mathrm{SU}_{n}(\mathbb{C})$-invariant form for polynomials $p \in \mathbb{C}_{h}^{d}\left[x_{1}: \cdots: x_{n}\right]$ with $p(x)=\sum_{\mu} p_{\mu} x^{\mu}$:

$$
\langle p, q\rangle^{d}:=\sum_{|\boldsymbol{\mu}|=d}\binom{d}{\boldsymbol{\mu}}^{-1} p_{\mu} q_{\mu}
$$

Open question: For what classes of polynomials do we get a Grace-type theorem for this bilinear form? (Also: Gurvits' capacity conjecture.)

Alternative form: $\langle p, q\rangle^{d}=D^{d}(p(x) q(z))$ for $D:=\sum_{i=1}^{n} \partial_{x_{i}} \partial_{z_{i}}$.

