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This set of exercises gives two proofs of the Borcea-Brändén characterization: an alternate proof which
does not use polarization, and the proof given in the slides except in the “usual” (non-homogeneous) poly-
nomial spaces. Both proofs give an explication of the conceptual link between a bilinear form and the
corresponding symbol of an operator. Further, the proofs are specially written to handle the case of stable
polynomials. In particular, the bilinear forms we use below are not quite the bilinear form which shows up
in Grace’s theorem. However, exercise (1) gives a statement which implies Grace’s theorem as a corollary,
by considering a “twist” of the bilinear form presented in exercise (2). (See also exercise (7).)

Definition. Given λ ∈ Zn+, let Cλ
h [x : y] := C(λ1,...,λn)

h [(x1 : y1), . . . , (xn : yn)] denote the set of polynomials
which are homogeneous of degree λi in the variables xi, yi for all i ∈ [n]. The zeros of polynomials in
this space are considered to be in (CP1)n. Further, let Cλ[x] := C(λ1,...,λn)[x1, . . . , xn] denote the set of
polynomials of degree at most λi in the variable xi for all i ∈ [n]. The zeros of polynomials in this space are
considered to be in Cn. Note that these two spaces are isomorphic via per-variable homogenization.

Definition. We denote the complex upper half-plane by H+ := {z ∈ C : Im(z) > 0}. We also let H+

denote the corresponding subset of CP1, given by H+ := {(x : y) ∈ CP1 : Im(xy ) > 0}. We denote the

complex lower half-plane by H−, and define this as a subset of both C and CP1 in the analogous way.
(We define Im(∞) := 0, as we consider ∞ to be on the extended real line.)

Definition. Given a polynomial p ∈ Cdh[x : y], the roots of p are defined to be the points (r : s) ∈ CP1

for which p(r : s) = 0. The polynomial p is said to be stable if p(x : y) 6= 0 whenever (x : y) ∈ H+. For
p ∈ Cλ

h [x : y], we say that p is stable if p((x1 : y1), . . . , (xn : yn)) 6= 0 whenever (xi : yi) ∈ H+ for all i.
Note that this corresponds to the notion of stable polynomials for p ∈ Cd[x] and p ∈ Cλ[x].

Definition. Given p ∈ Cd[x], the polarization of p is the unique

P = Pold(p) ∈ C(1,...,1)
h [x1, . . . , xd] = C1[x]

such that

1. Symmetry: P (x1, . . . , xd) = P (xσ(1), . . . , xσ(d)) for all σ ∈ Sd.

2. Diagonalization: p(x) = P (x, x, . . . , x).

For p ∈ Cdh[x : y], the definition is similar for P = Pold(p) ∈ C(1,...,1)[(x1 : y1), . . . , (xd : yd)]. Given
p ∈ Cλ[x], the polarization of p is defined via

Polλ(p) :=
(

Polλ1
x1
◦ · · · ◦ Polλn

xn

)
p,

where Polλi
xi

indicates applying the polarization operator defined above to the variable xi This definition then
extends to p ∈ Cλ

h [x : y] in the natural way.
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Example. Let λ = (2, 2) and define p(x, z) := 4x2z + 4xz + 4. Then the polarization is:

P (x1, x2, z1, z2) = 2x1x2z1 + 2x1x2z2

+ x1z1 + x1z2 + x2z1 + x2z2

+ 4.

For the equivalent homogeneous polynomial p(x, z) := 4x2zw + 4xyzw + 4y2w2, the polarization is similar:

P ((x1 : y1), (x2 : y2), (z1 : w1), (z2 : w2)) = 2x1x2z1w2 + 2x1x2z2w1

+ x1y2z1w2 + x1y2z2w1 + x2y1z1w2 + x2y1z2w1

+ 4y1y2w1w2.

Exercises

A proof of the Borcea-Brändén characterization without polarization

1. Given p ∈ C(d,d)
h [t : s, z : w], prove that (∂t∂w + ∂s∂z)p is stable (or identically 0) if p is stable. Here is

one possible outline of the proof.

(a) Given a stable polynomial p ∈ Cdh[t : s], define a map

Fp : H+ → CP1 given by (t : s) 7→ (∂sp(t : s) : ∂tp(t : s)).

Prove that either Fp maps the upper half-plane H+ into itself, or there exists a, b ∈ R, not both
0, such that (a∂t + b∂s)p ≡ 0. (Hint: There is a way to frame this as an equivalent form of
Laguerre’s theorem for stable polynomials.)

(b) Given a stable polynomial p ∈ C(d,d)
h [t : s, z : w], define a map

Gp : H2
+ → CP1 given by (t : s, z : w) 7→ ((∂t∂w + ∂s∂z)p(t : s, z : w) : ∂t∂zp(t : s, z : w)).

Prove that either Gp maps H2
+ into H+, or there exists a, b ∈ R, not both 0, such that either

(a∂t + b∂s)∂zp ≡ 0 or (a∂z + b∂w)∂tp ≡ 0.

(c) Handle the details to complete the proof. (Hint: If ∂t∂zp ≡ 0, perhaps ∂s∂wp 6≡ 0?)

2. Define a bilinear form

B(p, q) :=
1

d!2
(∂t∂w + ∂s∂z)

d [p(t : s) · q(z : w)]

for p, q ∈ Cdh[x : y]. Let L denote the space of linear endomorphisms of the vector space Cdh[x : y].
Consider the linear isomorphism:

L ∼= Cdh[x : y]⊗ Cdh[x : y]∗ ∼= Cdh[x : y]⊗ Cdh[x : y] ∼= C(d,d)
h [x : y, z : w],

where the first isomorphism is the canonical one, the second isomorphism is given on simple tensors
by p⊗B(q, ·) 7→ p⊗ q, and the third isomorphism is given by xjyd−j ⊗ xkyd−k 7→ xjyd−jzkwd−k. Let

this chain of isomorphisms be denoted by Φ : L → C(d,d)
h [x : y, z : w]. (Here, Φ[T ] is the symbol of

the operator T , and is usually denoted Symb[T ].)

Prove the formula

Φ[T ](x : y, z : w) =

d∑
`=0

(
d

`

)
zd−`w` · T

[
x`yd−`

]
= T

[
(xw + yz)d

]
,

where in the last expression, T only acts on the x : y variables. One option is to try to prove this
by directly computing Φ[T ], which is not too hard. Another option is to prove it on a basis of L as
follows:
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(a) Prove that the linear operator T := Φ−1(xjyd−jzkwd−k) is given by

T

[(
d

`

)
x`yd−`

]
=

{
xjyd−j ` = d− k
0 ` 6= d− k

.

(b) Show how this implies the above expression for Φ[T ] in full generality.

3. Using the notation of the previous exercise, prove that for any fixed T ∈ L and any fixed (x : y) ∈ CP1,
we have that

T [p](x : y) = B
(
Φ[T ](x : y, z : w), p(z : w)

)
,

where the bilinear form B acts on the polynomials in terms of the variables (z : w).

4. (The Borcea-Brändén characterization for univariate stable polynomials) Use exercises (1),
(2), and (3) to prove the following: If T is a linear endomorphism on Cdh[x : y] such that T

[
(xw + yz)d

]
is a stable polynomial, then T [p] is either stable or identically 0 whenever p is stable.

Show that this implies the equivalent statement for Cd[x]: If T is a linear endomorphism on Cd[x] such
that T

[
(x+ z)d

]
is a stable polynomial, then T [p] is either stable or identically 0 whenever p is stable.

5. (The Borcea-Brändén characterization for real-rooted polynomials) Using the previous ex-
ercise, prove the following: If T is a linear endomorphism on Rd[x] such that either T

[
(x+ z)d

]
or

T
[
(xz + 1)d

]
is a stable polynomial, then T [p] is either real-rooted or identically 0 whenever p is

real-rooted.

6. (The Borcea-Brändén characterization for multivariate stable and real stable polynomials)
Define a bilinear form

B(p, q) :=
1

λ1!2 · · ·λn!2

n∏
i=1

(∂ti∂wi
+ ∂si∂zi)

λi
[
p(t : s) · q(z : w)

]
for p, q ∈ Cλ

h [x : y]. Show that by defining Φ in the same way as above, we have for any linear
endomorphism T on Cλ

h [x : y] that

Φ[T ](x : y, z : w) =
∑

0≤µ≤λ

(
λ

µ

)
zλ−µwµ · T

[
xµyλ−µ

]
= T

[
n∏
i=1

(xiwi + yizi)
λi

]
,

where
(
λ
µ

)
=
∏
i

(
λi

µi

)
and xµ =

∏
i x

µi

i , and in the last expression T only acts on the x : y variables.
Further show that we have the formula

T [p](x : y) = B
(
Φ[T ](x : y, z : w), p(z : w)

)
,

where the bilinear form B acts on the polynomials in terms of the variables (z : w). State and prove
the results in this case which are analogous to that of exercises (4) and (5).

Aside: When T is a linear endomorphism on Cλ[x], then Φ[T ] should be replaced by T
[∏n

i=1(xi + zi)
λi
]

and/or T
[∏n

i=1(xizi + 1)λi
]

in the real stable case.

A proof of the Borcea-Brändén characterization with “usual” (non-homogeneous)
polynomials

7. Define a bilinear form

B(p, q) :=

n∏
i=1

(∂ti + ∂zi)
[
p(t) · q(z)

]
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for p, q ∈ C1[x]. Let L denote the space of linear endomorphisms of the vector space C1[x]. Consider
the linear isomorphism:

L ∼= C1[x]⊗ C1[x]∗ ∼= C1[x]⊗ C1[x] ∼= C(1,...,1,1,...,1)[x, z],

where the first isomorphism is the canonical one, the second isomorphism is given on simple tensors
by p ⊗ B(q, ·) 7→ p ⊗ q, and the third isomorphism is given by xj ⊗ xk 7→ xjzk. Let this chain of
isomorphisms be denoted by Φ : L → C(1,1)[x, z]. (Here, Φ[T ] is the symbol of the operator T , and
is usually denoted Symb[T ].)

Prove that for any T , we have

Φ[T ](x, z) =
∑

0≤µ≤1

z1−µ · T [xµ] = T

[
n∏
i=1

(xi + zi)

]
,

where xµ =
∏
i x

µi

i and in the last expression T only acts on the x variables. (Hint: See exercise 2.)

8. Using the notation of the previous exercise, prove that for any fixed T ∈ L and any fixed x ∈ Cn, we
have that

T [p](x) = B
(
Φ[T ](x, z), p(z)

)
,

where the bilinear form B acts on the polynomials in terms of the variables z.

9. (The Borcea-Brändén characterization for multiaffine stable polynomials) Use exercises (8)
and (9) to prove the following: If T is a linear endomorphism on C1[x] such that T [

∏n
i=1(xi + zi)] is

a stable polynomial, then T [p] is either stable or identically 0 whenever p is stable.

10. (The Borcea-Brändén characterization for multivariate stable polynomials) Recall that one
corollary of the Walsh coincidence theorem is that Pold(p) is stable if and only if p is stable for p ∈ Cd[x].
Use this fact and the previous exercise to prove the following: If T is a linear endomorphism on Cλ[x]
such that T

[∏n
i=1(xi + zi)

λi
]

is a stable polynomial, then T [p] is either stable or identically 0 whenever
p is stable.

11. (The Borcea-Brändén characterization for multivariate real stable polynomials) Using the
previous exercise, prove the following: If T is a linear endomorphism on Rλ[x] such that either
T
[∏n

i=1(xi + zi)
λi
]

or T
[∏n

i=1(xizi + 1)λi
]

is a stable polynomial, then T [p] is either real stable or
identically 0 whenever p is real stable.

Other exercises

12. (Multivariate Grace’s theorem) Prove the multivariate Grace’s theorem: Given p, q ∈ Cλ
h [x : y],

if there is a circular region C ⊂ CP1 for which p is Cn-stable and q is (CP1 \ C)n-stable, then

n∏
i=1

(∂ti∂wi
− ∂si∂zi)λi

[
p(t : s) · q(z : w)

]
6= 0.

(Hint: What invariance properties does this bilinear form have?)

13. Prove that the linear operator 1− ∂x1
∂x2

acting on Rλ[x] preserves real stability for any λ.

14. Prove that the linear projection MAP : Rλ[x]→ R1[x], which acts as the identity on multiaffine terms
and annihilates all other terms, preserves real stability for any λ.

15. Prove that a polynomial p ∈ Cλ[x] is stable if and only if the real part pR of p and the imaginary part
pI of p are both real stable and pI � pR.
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16. A polynomial in Cλ[x] is strictly stable if it is Cn-stable where C = H+ is the closure of the upper
half-plane. Prove that the set of stable polynomials in Cλ[x] is the closure of the (open) set of all
strictly stable polynomials in Cλ[x].

17. Prove that any linear subspace of Cλ[x] consisting of stable polynomials is at most one-dimensional.
Prove that any linear subspace of Rλ[x] consisting of real stable polynomials is at most two-dimensional.
(Hint: Do the real stable one first.)

18. Prove the other direction of the Borcea-Brändén characterization:

(a) If T is a linear operator on Cλ[x] which preserves stability and such that the image of T is of
dimension greater than 1, then the symbol of T (that is, Φ(T ) in our notation here) is a stable
polynomial.

(b) If T is a linear operator on Rλ[x] which preserves real stability and such that the image of T is
of dimension greater than 2, then the symbol of T (that is, Φ(T ) in our notation here) is a real
stable polynomial.

19. Everything we have done here has been in terms of spaces of polynomials which have bounded degree.
There is also a Borcea-Brändén characterization in terms of linear operators on the whole space of
polynomials in a certain number of variables (that is, on C[x] or R[x]). What sort of symbol Φ[T ]
would be needed for this kind of characterization? For those who haven’t already seen it: any guesses
on what this symbol is?

20. Use any of the above versions of the Borcea-Brändén characterization to give a similar result for
Cn-stability where C is the open complex unit disc.
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