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Relative entropy

Given a base measure v on a support set S C R”, let i := ¢ - v be another
measure given via a function ¢ : S — R. Define relative entropy:

Dre (i) = [ 6(x)log o(x)dv (x).

Discrete case: Let p be a polynomial associated to p supported on
S C 77 via p(x) = > ,es i(v) - x¥. When v is uniform on S we have

D) = 3 [ {75608 7791 a7 = os151 4,

where #H(u) is the entropy of 1. Properties for fixed S:
e When p is a probability distribution, H(u) > 0.
@ When p, v probability distributions, Dk (u||v) > 0
e H(u) is maximized for = the uniform distribution.
@ Dk (u]|v) is minimized for y = ¢ - v when ¢ = 1.
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Maximum entropy distributions

Last slide: For distributions v and 1 :=¢ - v on S:

Dre (1) = [ 6(x) log d(x)dv(x).

Discrete case: Also H(v) .= — 3 ,csv(v)logy(v).
Maximum entropy distribution: Fix o in hull(S) for discrete S.
Hopt := sup  H(v) with vept :=argsup.
suHE:)[p(]V):S

Discrete picture for p ~ v:

o
i) |

o e o
supp(p)

Optimum always of the form vop(v) = V) for some y (via capacity).
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Minimum relative entropy distributions

Previous slide: For distributions v and p:=¢-v on S:

Dre (1) = [ 6(x) log o(x)dlv(x).

Minimum relative entropy (“maximum entropy”) distribution:
Fix @ in hull(S) for any S, and fix some base measure v on S.

Hopt := ian Dki(pl|v) with  popt := arginf.
p=¢-v
E[u]=6

Continuous picture where Q = S:

Optimum always of the form piop: = %) . v for some y (via capacity).
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Relation to capacity

Last slide: Fix 8 in hull(S) for any S, and base measure v on S.

Hopt := indf Dki(pl|v) with  popt := arginf.
p=¢-v
E[u]=6

This min relative entropy program has the following dual formulation:

inf Dki(p|lv) = — inf [Iog/e(y"’>d1/(v) —(y,0)| = —logCapg(p),
p=¢v yeR®
E[u]=6
. [ xvdu(v)
where p(x) = /x dv(v) and Capy(p) = ;Q%T

Strong duality: fiopt = eWort:V) .y — xc'J’pt - v where Xqpt is the optimum
input for Capg(p) = Max entropy optimization equivalent to Capy(p).
@ Infinite-dimensional max entropy vs n-dimensional capacity.
o Ellipsoid method for capacity via evaluation and gradient oracles.
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Unitary group: Set of n x n complex matrices U such that U* = U~1.
Hermitian matrix: An n X n complex matrix H such that H = H*.

e H=>",ivivi for \y > --- > A\, € R and v; orthonormal.

o Majorization property: Y% )\, > Sk | h,{,- for all k (= for n).

@ For any unitary U, matrix UHU* is Hermitian with same eigenvalues.

Unitary “adjoint” orbits: Orbit of H under conjugation action.

o Equivalent: Set of Hermitian matrices with specified eigenvalues.

o “Adjoint”: Orbits under action of unitary group on its Lie algebra.

E.g.: Orbit of D = diag(1,0,...,0) is set of rank-one projection matrices.
Convex hull of this orbit is the set of trace-1 positive semidefinite matrices.

Majorization: Diagonal entries of any UDU* gives a simplex element.
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Last slide: D = diag(1,0,...,0), orbit of D:
Op = {UDU" : U unitary} = {H : eig(H) = (1,0,...,0)}.
Fact: The map diag: H +— (hi1, ..., hnn) is such that:
diag(Op) = A, = {x eER] D x= 1} = hull({o - eig(D) : 0 € Sp}).
i=1
Proof: For any x € Ay, pick H = y/x - /x' where /- is entrywise.

More general: For any D, we have that diag(Op) is a convex polytope.
Proof idea: The majorization inequalities translate to:

k k n n
SN2 hoyew forall ko and SN =tr(H) = hi
i=1 i=1 i=1 i=1

These cut out the correct polytope, called the moment polytope.
We call the map diag the moment map. (From torus action, generally.)
E.g.: (1,0,...,0) — simplex, (n,n—1,...,1) — permutohedron.
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Measures on orbits

Given real diagonal D, consider unitary conjugation orbit Op.

Unitary Haar measure: “Uniform” measure on unitary group U(n).

e Unique unitarily invariant probability measure on U(n):

/ f(U)dU = f(VU)dU = f(UVv)du.
U(n) U(n) U(n)

@ Easily sampled by iteratively constructing random orthonormal basis.

@ Pushforward through the map U — UDU* gives conjugation-invariant
Haar measure on the orbit Op: [, f(H)dH = [, f(UHU")dH.

Looking ahead: This “uniform” Haar measure is a great candidate for the
base measure on Op for the maximum entropy program on Op.

Further: Push forward this measure through diag: “pushes forward” max
entropy distributions. What’s the base measure on the polytope?

Last week: For D = diag(1,0,...,0), this measure is uniform on A,.
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Moment polytope measure for unitary orbits

Last slide: For D = diag(1,0,...,0), the pushforward measure through
diag is uniform on Ap:

/OD f(diag(H))dH:/ F(x)dx.

n

E.g.: Let Y = diag(y) for some y € R". Then:
/ Y H gH = eYX'dx =  max entropy correspondence.
Op Ap

Problem: Does not hold for general D. Duistermaat-Heckman:
Pushforward is a piecewise polynomial density times uniform measure.

Solution: Higher-dimensional polytope and another “moment-like” map
for which the pushforward is uniform: Gelfand-Tsetlin (GT) polytope.

More general question: Can we evaluate the Duistermaat-Heckman
measure? Piecewise polynomial denisty very generally for toric action on

symplectic manifold, density is always log-concave, etc...
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Gelfand-Tsetlin polytope

Hermitian matrix H with eigenvalues A\; > --- > A,: let R denote the
map H — (R,-j)1<,.§l.<n where R;; is the it largest eigenvalue of the j x j
submatrix in the top left corner of H. E.g.: Ri, = A; and Ri1 = Hi1.

Cauchy interlacing theorem: Ry ;> R1; 1> R ;> Ryj_1 >R3> ---

Rayleigh triangle: Organizing the R;; in a natural way:

Rl,n R2,n R3,n R4,n o Rn n

Rin-1 R>n—1 R3.n—1 e Rn—1,n-1

Rin—2 R> n—2 <o+ Rn2n-2

Cauchy interlacing theorem = the Cauchy inequalities cut out the
Gelfand-Tsetlin polytope GT () of all triangles with top row A.

Fun fact: The image R(Op) is GT(A), and the pushforward of the
invariant measure dH on Op is the uniform measure on GT(A).
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Outline

© Computing max entropy distributions
@ The convex optimization problem
@ The ellipsoid method
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Ellipsoid method

Ellipsoid method for convex optimization: Iterations of the algorithm:
© Have an ellipsoid which contains the optimum input.

@ Compute the gradient at the center of the ellipsoid: Determines
which half of the ellipsoid contains the optimum.

© Construct a new ellipsoid containing that half.
At the end: Small ellipsoid containing the optimum = approximation.
Need: (1) Oracle for the gradient, and (2) starting ellipsoid.
(There are more details to this, but this is roughly the idea. We'll discuss
this a bit further, but see [L-Vishnoi '20], [Singh-Vishnoi '15] for details.)

Recall the convex optimization (capacity) problem:

— inf Iog/e<y"’>dy(v) - <y,0)} = — inf [Iog/e<y"’_9>dy(v)] :

yeR”

yeR”

Need: Oracle for Vlog [ eV dv(v) and “bounding box” for yopt.
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Applying ellipsoid method to unitary orbit capacity

Unitary orbits: Op for real diagonal D with invariant Haar measure dH:

Optimize —inf {Iog/
Y Op
Last slide: Need oracle for V Iogfe<Y’H>dH and bound on Y.

First: dH is a pushforward measure of dU through U — UDU*:
/ eV dgH = elY:UbUl qu.
OD U(n)

e<Y’H@>dH} for © € hull(Op).

HCIZ formula: For eig(D) = (A\1,...,A,) and eig(Y) = (y1,.--,¥n):

/ e(Y,UDU*>dU
U(n)

?:11 i! d <|: )\-y-j|n >
= -det | [e™VI )
[Ticj(Ni = M) Tl (vi — ) ij=1
Apply gradient to get the oracle. Also: L'Hopital to handle multiplicity.

Next: Bound on Yo, Unitary invariance = “balanced” measure.
Depends on distance § of © from boundary: || Yopt|| < poly(n,log|/D||, %)
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Alternative method for computing max entropy

Previous slides: Invariant measure dH on Op corresponds to uniform
measure on a polytope (either through diag of Ralyeigh map R).

Rank-one case: Polytope is simplex and Y = diag(y) gives
/ e YH gH = eV X) dx.
Op Ap

Therefore: Computing integrals / max entropy over Op is equivalent to
integrals / max entropy over A,. Utilize algos which compute integrals
over convex polytopes (e.g. [Lovasz-Vempala '06]).

Similarly: For general D and Y = diag(y), we have
/ Y H gH = ely:tyre(R) yR.
Op GT(\)
Here: R is a Rayleigh triangle, and type(R) outputs the vector of
“diagonal entries” of R (i.e., hxx = Zf—‘zl Rix — foz_ll Ri k1)

Again: Utilize algos which compute integrals over convex polytopes.
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@ Sampling max entropy distributions
@ Sampling from the associated polytope
@ Returning to the orbit
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Sampling from the associated polytope

Recall: The uniform distribution (dH) on Op is easy to sample from.

Idea: Choose random unitary and conjugate D to get sample UDU*.

Problem: What about max entropy distributions e!Y-H) dH?
Idea: Sample from the polytope, then “bring back” to the orbit.
Previous slides: For Dy = (1,0,...,0), general D, Y = diag(y):

/ e YoH) g — e ¥ dx, / e Y H) gH = e type(R)) yp.
ODO Ap OD GT(A)

Ways to sample: General methods for sampling from log-concave (even
log-linear) distributions from convex polytopes.

Or: One can get a good handle on the entrywise CDFs conditioned on

various other coordinates: always determinants here. Sample?

Next problem: How to go back to the orbit Op?
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Returning to the orbit: Rank-one case

Last slide: Sample x from A, according to e¥* dx.

Next question: How do we convert x into a sample from Op (the orbit
of rank-one projections) according to Y M dH = eV W) dy?

Let's compute the fiber of a given x € A,:
diag~!(x) = {w* : diag(w*) = x} = T" - Vxv/x .

That is: v = (eiel\/)Tl, e e"e"\/xi,,). Since Y is diagonal, we then have
oY W) _ g(diag(e )Y diag(e®),v/xv/x ') _ (Y VxVx)

That is: The max entropy distribution is uniform on fibers.

Therefore: To construct a rank-1 projection sample from a simplex
sample, we just need to uniformly sample from T" and multiply by v/x.
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Returning to the orbit: General case

Now: Sample Rayleigh triangle R from GT(\) according to ey ype(R)) 4R
Next: How to convert R into a sample from Op according to e!Y-H)dH?

Problem: Fibers of R are more complicated. (Recall that R holds the
eigenvalues of all leading principal submatrices).

Solution: Induct on the rows of R. Assume we have k x k sample
according to the bottom k rows, and construct a (k + 1) x (k 4 1) matrix
using the next ((k + 1)) row up.

Rl,n R2,n R3,n R4,n o Rn n

)

Rin-1 R>n—1 R3.n-1 e Rn—1,n-1

Rin—2 R> n—2 SR £ 0, Y

That is: Given k x k matrix Xp, we want to sample [ffﬂ ‘C’]

Key: Max entropy distributions are uniform on these “partial fibers”.
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Returning to the orbit: Partial fibers

Task: Given k x k Hermitian Xy with eigenvalues A\; >

- > Ak, want to
sample uniformly random matrix [ff,? ‘C’} with eigenvalues v1 > -+ > Yi41.

For simplicity: We assume entries of v and A\ are all distinct.
© Diagonalize Xy using |:0T 1} to get {DO "C"] where diag(Dg) = A
@ Compute c = [ty — Y1 A
© Hardest part: Sample w. Recall that A, ~ interlace and note that:

k+1
H(z—fy,-):det (zl— [59 ';'__’D
=1
K K
=(z-o)J[E=2) =D IwilPI[(z=X)
i=1 i—1 i

Plug in z = );, rearrange: |w;|?> = I ARCY) sample e”|w;|
,’ B [L,=2)" I

Q Apply [014 ﬂ* to convert Dy back to Xp.

Jonathan Leake (TU Berlin) Max Entropy on Unitary Orbits Winter 2020-2021 22/22



	Last time
	Maximum entropy distributions
	Capacity and entropy

	Unitary orbits
	Orbits and moment polytopes
	Distributions on orbits and moment polytopes
	Gelfan-Tsetlin polytope

	Computing max entropy distributions
	The convex optimization problem
	The ellipsoid method

	Sampling max entropy distributions
	Sampling from the associated polytope
	Returning to the orbit


