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Polynomial notation:

o R Ry, C,Z, := reals, non-negative reals, complex numbers,
non-negative integers.

xt=TI; x" and p < X is entrywise.

R[x] := v.s. of real polynomials in n variables.

R, [x] := v.s. of real polynomials with non-negative coefficients.
R*[x] := v.s. of polynomials of degree at most ); in x;.

For p € R[x], we write p(x) = 3, pux*.

For d-homogeneous p € R[x|, we write p(x) = 3|, =g Pux".
The support of p is the set of pu € Z" for which p, # 0.

dix = a% = Oy := derivative with respect to x, and 9% := []; 9%’

p(a-t+ b) = p(ait + by,...,ant + b,) € RMT+M[t] is a linear
restriction of the polynomial p € R*[x], where a € R7 and b € R".
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Motivation: Matroid basis-generating polynomials

The spanning trees of G = set of bases of a graphic matroid.

Matroid: M = (E,T) where E is the ground set and T C 2F are the
independent subsets, which satisfy:

@ Nonempty: 7 # @.
© Hereditary: B€Z and AC B implies A€ 1.

© Exchange/Augmentation: For all A, B € 7 such that |A| < |B|,
there exists e € B\ A such that AU {e} € 7.

E.g.: A set of vectors in a vector space, with Z given by linearly
independent subsets (linear matroid). The set of edges of a graph, with
T given by subsets with no cycles (graphic matroid). Many more...

Maximal B € Z are the bases, B C Z, of M. Another definition of M:

© Exchange: For any bases By, B, € B and any e; € B; \ B, there
exists e € B, \ By such that (By \ {e1}) U{ex} € B.

The spanning tree polynomial is a basis-generating polynomial. Others?
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Motivation: Hodge-Riemann relations

Adiprasito-Huh-Katz '15: Resolution of the Heron-Rota-Welsh
conjecture saying that the coefficients of the characteristic polynomial of a
matroid form a log-concave sequence.

Use Hodge-Riemann (HR) relations: These are certain definiteness
properties related to various linear maps and their kernels.

Appear in many contexts:
e Cohomology of real forms on compact Kéahler manifold [Gromov '90].
@ Algebraic cycles modulo homological equivalence on a smooth
projective variety [Grothendieck '69].
@ McMullen's algebra generated by a simple convex polytope ['93].

The part that is used for the Heron-Rota-Welsh conjecture boils down to a
certain quadratic form having Lorentz signature (+,—, —,..., —).

Fact: Hessians of a real stable polynomial p € Ry [x] in the positive
orthant all have Lorentz signature. Char. polynomial is not real-rooted.
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Motivation: Mason's strongest conjecture

Conjecture [Mason '75]: If M = (E,Z) is a matroid such that |E| = n,
and /, denotes the number of independent sets of M of size k, then
(I)7—o forms an ultra log-concave sequence.

Easy idea: Let's use Newton's inequalities. Need to show that
n
/M(t) = Z /kl’k
k=0

2
is a real-rooted polynomial. = ULC: (Ikn“) . (Ik,jl) < [(l,f)] .
k—1

k+1 k

Problem: Size of maximum independent set can be less than n.
= deg(/m(t)) =: d < n. = ULC definition changes.

Fact: There is an M such that deg(/y(t)) = d < n, but the coefficients
are not ULC with respect to degree d. = [y(t) is not real-rooted.
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Motivation: Random walks on simplicial complexes

Simplicial complex: Collection X of subsets of E for which ¢ € X and
7 C o implies 7 € X. E.g.: Matroids are simplicial complexes.

Local random walks: Random walk on the “1-skeleton” of a given o € X.

Kaufman-Oppenheim '18: Random walk on simplicial complex has large
spectral gap if the second largest eigenvalue of the random walk matrix of
every 1-skeleton is small (largest eigenvalue is 1).

The point: Large spectral gap implies rapid mixing of the random walk,
which implies efficient sampling/counting.

How is this related to polynomials? The 1-skeletons can be associated
to multiaffine polynomials, where the choice of o corresponds to a choice
of derivatives. The random walk matrix is related to the Hessian matrix.

Real stable polynomials: Hessians have Lorentz signature.
=—> Second largest Hessian eigenvalue < 0. Other polynomials?
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Completely log-concave polynomials

Idea: Combine Lorentz signature with ULC coefficient conditions.
Also: Want partial derivatives to preserve the property.

Definition (Gurvits '09, Anari-Oveis Gharan-Vinzant '19)

A d-homogeneous polynomial p € R [x] is completely log-concave
(CLC) if for any choice of vy, ..., v € R for any k, we have that

Vvl e Vvkp = (ZI Vliax,') ce (ZI Vkiax,-)p

is log-concave in the positive orthant or = 0.

Fact: If d =1, linear with non-negative coefficients = trivial.
Fact: If n =2, CLC is equivalent to ultra log-concave coefficients.
Fact: If d =2, CLC is equivalent to real stability.

E.g.: Matroid basis polynomials, vol(>"; x;K;) for convex compact K;

Equivalent theory of Lorentzian polynomials [Brandén-Huh '19] involves
matroidal support. (Many equivalent definitions.)
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Properties of completely log-concave (CLC) polynomials

Proposition

If p, g € Ry [x] are CLC polynomials, then
Q@ Vap foraeR] and p|, _, are CLC.
@ The Hessian V2p(a) is Lorentz for all a € R..
@ p(Ax) is CLC for all n x m matrices A with non-negative entries.
Q p(a-t+b-s)eRy[t,s]is CLC for all a,b € R}
@ p(x)-q(z) € Ry[x,z]is CLC.
Q@ p(x)-q(x) € Ry[x] is CLC.

v

Lorentz matrix: Hermitian with signature (+,—, —, ..., —), or in closure.

Note: (1) is straightforward, and (4) follows from (3).
Also: (6) follows from (3) and (5), via f(x, z) := p(x) - g(z) and

p(x) - q(x) = F(Ax) = f ([/ /nfx> .
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Log-concavity and Lorentz signature

Lorentz equivalence: Let p € R, [x] be d-homogeneous, and fix some
a € R7 with p(a) > 0. Let Q := V2p(a) denote the Hessian at a. TFAE:
@ V?logp(a) is negative semidefinite (log-concavity at a).
@ Q is negative semidefinite on (Qa)L.
© Q is negative semidefinite on (Qb)* for all b € R7 with p(b) > 0.
© Q is negative semidefinite on some (n — 1)-dimensional subspace.
Q@ Q is Lorentz.

Euler’s identity: d-p =}, x;0x,p. Apply to Ox;p and p to get

QRQa=(d—1)-Vp(a) and a'Qa=d(d—1)-p(a).
E.g.: (Qa); = >, ai0x0xp(a) = (d — 1) - Oxp(a).

This implies V2 log p(a) can be written as

p-V’p—(Vp)-(Vp)'

(a"Qa)Q — 74 (Qa)(Qa)”
p? '

(aT Qa)2
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Log-concavity and Lorentz signature

To prove: For @ := V?p(a), the following are equivalent:
@ V?logp(a) is negative semidefinite (log-concavity at a).
@ Q is negative semidefinite on (Qa)™.
@ Q is negative semidefinite on (Qb)* for all b € R7 with p(b) > 0.
Q@ Q is negative semidefinite on some (n — 1)-dimensional subspace.
@ Q is Lorentz.

Recall: V2logp(a) > (a'Qa)- Q@ — 4% - (Qa)(Qa)" and a’ Qa > 0.

(1) = (2): First, for all z € (Qa)t = z'Qa =0 we have

d

0>z"(a'Qa) Q- ——-(Qa)(Qa)' | z=(a'Qa) - (z' Q2).
(2) = (4): (Qa)" is an (n — 1)-dimensional subspace.
(4) = (5): By assumption Q has at most one positive eigenvalue. Since

entries of @ are non-negative, @ has at least one non-negative eigenvalue.
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Log-concavity and Lorentz signature

To prove: For @ := V?p(a), the following are equivalent:
© V2log p(a) is negative semidefinite (log-concavity at a).
@ Q is negative semidefinite on (Qa)L.
@ Q is negative semidefinite on (Qb)* for all b € R7 with p(b) > 0.
Q@ Q is negative semidefinite on some (n — 1)-dimensional subspace.
Q@ Q is Lorentz.

Recall: V2logp(a) > (a'Qa)- Q — 4% - (Qa)(Qa)" and a’ Qa > 0.

(5) = (1): Let P be the n x 2 matrix with columns a and z € R"™:

a'Qa a'Qz
z'Qa z'Qz

PTQP = [ ] = det(PTQP) > z"[V2log p(a)]z.

So: Want to show det(PT QP) < 0. Enough to show PTQP is not PD,
since a' Qa > 0 implies PT QP is not NSD.

But: PT QP cannot be PD, or else Q would have two positive eigenvalues.
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Log-concavity and Lorentz signature

To prove: For @ := V?p(a), the following are equivalent:
© V2log p(a) is negative semidefinite (log-concavity at a).
@ Q is negative semidefinite on (Qa)*.
@ Q is negative semidefinite on (Qb)* for all b € R7 with p(b) > 0.
© Q is negative semidefinite on some (n — 1)-dimensional subspace.
@ Q is Lorentz.

Recall: V2logp(a) > (a'Qa)- @ — 4% - (Qa)(Qa)" and a’ Qa > 0.

(2) = (3): Note that both conditions only depend on the matrix Q.
Consider the polynomial g(x) := 2x Qx, which is such that

V3g(a) = Q = V?q(b) for all b.
So applying the equivalence (2) < (4) to g and Q := V2q(b) says

that Q' is negative semidefinite on (Q'b)* since Q' = Q is negative
semidefinite on the (n — 1)-dimensional subspace (Qa)™.
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Properties of CLC polynomials, revisited

If p, g € Ry [x] are CLC polynomials, then
Q Vap for a€R] and p|, _, are CLC.
@ The Hessian V2p(a) is Lorentz for all a € R.
@ p(Ax) is CLC for all n x m matrices A with non-negative entries.
Q p(a-t+b-s)eR[t,s]is CLC for all a,b € RY}..
Q p(x)-q(z) € Ry[x,z]is CLC.
Q p(x)-q(x) € Ry[x] is CLC.

v

Bonus: A quadratic homogeneous polynomial p(x) = x" Ax is CLC if and
only if A is Lorentz.

Next: p(Ax) and products.
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Precomposition by positive linear action preserves CLC

Fact: If p € Ri[xq,...,x,] is CLC and A is an n X m matrix with
non-negative entries, then p(Ax) € Ri[xy,...,xm] is CLC.

Proof: For any v € R7, we have

V. [p(Ax)] = i vjOy; [ (Z AkXky - - i anka>]
j=1 k=1

:éijéaUax’) ] (Ax) = [(Zzauvj ) ] (Ax).

i=1j=1
To complete the proof, need to show that p(Ax) is log-concave in the
positive orthant whenever p is:

log p(A[t - x + (1 —t) - y]) = log p(t - (Ax) + (1 — t) - (Ay))
> t-log p(Ax) + (1 — t) - log p(Ay).
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Products of CLC polynomials are CLC

Lemma (sum-of-CLCs): If p,q € R [x] are d-homog. CLC polynomials
such that Vpp = Vg # 0 for some b, c € R”, then p+ g is CLC.

Corollary: If p(x) and q(z) are CLC, then so is p(x) - q(2).

Proof: Log-concavity is straightforward, since the log of a product is the
sum of logs. By induction, for any b, c € R’}

Vib,e) [P(x) - a(2)] = Vbp(x) - 9(2) + p(x) - Vcq(2)
is a sum of CLC polynomials. Further,
Vo,0) [Vbp(x) - a(2)] = Vep(x) - Veq(z) = Vb o) [p(x) - Veq(2)] .-

Therefore the sum-of-CLCs lemma applies if Vpp(x) - Vceq(z) Z0. If
Vp(x) - Veq(z) =0, then one of the polynomials in the above sum is 0.
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Proof of the sum-of-CLCs lemma

Lemma (sum-of-CLCs): If p, g € R, [x] are d-homog. CLC polynomials
such that Vpp = Vq # 0 for some b,c € R, then p+ g is CLC.

Proof of Lemma: By induction on degree, for all a € RZ, we have

So we just need to show that p + g is log-concave in the positive orthant.
For any a € R, define Q; := V?p(a) and Q, := V?q(a) to get

(Qub); = Z biOx,0x;p(a) = 0x;Vpp(a) = 05,V cq(a) = (Q2¢);.

That is Q1b = Q¢ # 0. Log-concavity of p, g then implies @1 and @ are
both NSD on (@1b)* = (Qxc)* by the Lorentz equivalence.

Therefore @1 + Q2 = V2[p + g](a) is NSD on this (n — 1)-dimensional
subspace, which implies V2 log[p + g](a) is NSD by Lorentz equivalence.
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Properties of CLC polynomials, revisited

If p,q € Ry[x] are CLC polynomials, then
Q@ Vap forae€ R} and p|, _, are CLC.
@ The Hessian V2p(a) is Lorentz for all a € R.
@ p(Ax) is CLC for all n x m matrices A with non-negative entries.
Q p(a-t+b-s)eRy[t,s]is CLC for all a,b € R}
@ p(x)-q(z) € Ry[x,z]is CLC.
Q@ p(x)-q(x) € Ry[x] is CLC.

Lemma (sum-of-CLCs)

If p,q € Ry [x] are d-homogeneous CLC polynomials such that
Vpp = Veq #0 for some b,c € R}, then p+ q is CLC.

Two main corollaries: Reduction to quadratics and symbol theorem.
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© Reduction to quadratics
@ Proof of the reduction
@ Corollaries of the reduction
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Reduction to quadratics

Theorem (Anari-Oveis Gharan-Vinzant '19; see also Brandén-Huh '19)

A d-homogeneous polynomial p € R [x] is CLC iff:
Q Forall p € Z1, with |p| < d — 2, 9p is indecomposable.
Q Forall p € Z1, with |p| =d — 2, 9 p is log-concave in RY}..

Indecomposable polynomial: p cannot be written as p = f 4+ g where
f,g # 0 depend on disjoint variables.

Easy direction ( = ): If 9%'p is decomposable and of degree d’, then

Ve 2(0lp) = V2 (F+g) = V{2 + V] %

is a decomposable quadratic form. Therefore p(x) = x" /(L)\ g} X, where

A, B are Lorentz matrices since f and g are CLC (plug in 0).

Contradiction: Hessian of p has two positive eigenvalues.
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Proof of reduction to quadratics, harder direction

Simplify: Assume that p, > 0 for all || = d. = Stronger than
indecomposable. (One can limit the positive coefficients case to the
general indecomposable case, but this is not obvious [Brandén-Huh '19].)

Lemma: If Ox,p is CLC for all i, then V,p is CLC for all a € R
Proof: First assume a > 0, and let Dy := Zf‘zl ajOy;. Assume by
induction that Dyp is CLC. By the sum-of-CLCs lemms, we have that

ak+10x.,(Dkp) = Di(ak+10x,,P)
= Dyiip= (Dk + ak+18Xk+l)p is CLC.

Note that sum-of-CLCs applies because O, ,(Dxp) # 0, since p,, > 0. For
a € R’} we simply skip the entries of a which are 0.

Including indecomposability: Need to order the variables in such a way
so that Oy, ,(Dkp) # 0. (Exercise.)
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Proof of reduction to quadratics, harder direction

Theorem (Anari-Oveis Gharan-Vinzant '19; see also Brandén-Huh '19)

A d-homogeneous polynomial p € R [x] is CLC iff:
Q Forall p € Z with |p| < d — 2, 9% p is indecomposable.
Q Forall p € Z7 with |p| =d — 2, 0% p is log-concave in R%.

Assume: p,, > 0 for all |u| = d.
Lemma: If O,,p is CLC for all i, then V,p is CLC for all a € R}

Other direction ( <= ): It suffices to show that p is log-concave in R’
and that V,p is CLC for all @ € R’}. By induction on degree, Oy,p is CLC
for all i. Thus the lemma applies, and V,p is CLC for all a € R

The log-concavity of p then follows from the fact that p is log-concave at

a iff Vap is log-concave at a. Why? Lorentz equiv. and Euler’s identity:
n

V2[Vapl(a) = [2,. a,-axjaxkax,.p(a)}j = [axjaxkp(a)} _ V2p(a).

n

j,k=1
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Corollaries of the reduction to quadratics: real stability

Fact: If the quadratic form p(x) := x" Ax € R" [x] is real stable, then A
is Lorentz. (Note that A is the constant Hessian of p in this case.)
Corollary: Homogeneous real stable polynomials are CLC.

Proof for quadratics: By Perron-Frobenius, A has an eigenvalue A\; > 0
with corresponding eigenvector a which has non-negative entries. Suppose
A has a second positive eigenvalue Ay with corresponding eigenvector b.

Contradiction: This implies the linear restriction p(a- t + b) has no zeros.
Note: Perron-Frobenius usually requires strictly positive entries. However,

indecomposability implies Perron-Frobenius can be used. This is one
possible intuition for indecomposability.

Note: The converse is also true: A quadratic is real stable if and only if
the associated matrix is Lorentz. Actually, many equivalences at the level
of quadratics. Proof: Exercise.
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Corollaries of the quadratic reduction: ULC

Fact: Homogeneous p € R [x1, x2] is CLC iff its coefficients are ULC.

Proof: Follows directly from the reduction to quadratics:

@ Indecomposable: Equivalent to having no internal zeros in
coefficient sequence. (Take derivatives until ax{ + bxj with
|k —j| >2and a,b#0.)

@ Quadratic derivatives: Each derivative of degree d — 2 picks out a
sequence of 3 coefficients in p. We just need to show that these
quadratics have non-negative discriminant to prove ULC. A bivariate
quadratic form looks like:

x' lz ﬂ x = ax} 4 2bxixo + cx3

This matrix is Lorentz iff det < 0 iff ac < b? iff (2b)? — 4ac > 0.
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9 Symbol theorem for CLC polynomials
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Symbol theorem for multiaffine CLC polynomials

Definition: The symbol of a linear operator T : R} [x] — R [x]:

Symb)‘[T](x,z) =T [H(x,- + z,-)] = Z zl_“T[x”]

i=1 p<1

Here T acts only on x and p < 1 is entrywise.

Theorem (Anari-Liu-Oveis Gharan-Vinzant '19, Brandén-Huh '19)

For a given linear operator T : R} [x] — R, [x], we have that T preserves
CLC (allowing = 0) if Symb![T](x, z) is CLC.

n

Proof: T[p](x) = [ (02 + 0| =m0 |SYmb'[T](x, 2) - p(£)] .
i=1

Corollary: Homogeneous real stability preservers preserve CLC.

Fact: Polarization also preserves CLC. = More general symbol theorem
follows from the same polarization techniques as in the real stable case.
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