Completely Log-concave (Lorentzian) Polynomials Polynomial Capacity: Theory, Applications, Generalizations

Jonathan Leake

Technische Universität Berlin

November 26th, 2020

Notation

Polynomial notation:

- $\mathbb{R}, \mathbb{R}_+, \mathbb{C}, \mathbb{Z}_+ :=$ reals, non-negative reals, complex numbers, non-negative integers.
- $\mathbf{x}^{\boldsymbol{\mu}} := \prod_i x_i^{\mu_i}$ and $\boldsymbol{\mu} \leq \boldsymbol{\lambda}$ is entrywise.
- $\mathbb{R}[\mathbf{x}] := v.s.$ of real polynomials in *n* variables.
- $\mathbb{R}_+[\mathbf{x}] := v.s.$ of real polynomials with non-negative coefficients.
- $\mathbb{R}^{\lambda}[\mathbf{x}] := v.s.$ of polynomials of degree at most λ_i in x_i .
- For $p \in \mathbb{R}[\mathbf{x}]$, we write $p(\mathbf{x}) = \sum_{\mu} p_{\mu} \mathbf{x}^{\mu}$.
- For *d*-homogeneous $p \in \mathbb{R}[\mathbf{x}]$, we write $p(\mathbf{x}) = \sum_{|\mu|=d} p_{\mu} \mathbf{x}^{\mu}$.
- The **support** of p is the set of $\mu \in \mathbb{Z}^n_+$ for which $p_{\mu} \neq 0$.
- $\frac{d}{dx} = \frac{\partial}{\partial x} = \partial_x := \text{derivative with respect to } x$, and $\partial_x^{\mu} := \prod_i \partial_{x_i}^{\mu_i}$.
- $p(\boldsymbol{a} \cdot \boldsymbol{t} + \boldsymbol{b}) = p(a_1 \boldsymbol{t} + b_1, \dots, a_n \boldsymbol{t} + b_n) \in \mathbb{R}^{\lambda_1 + \dots + \lambda_n}[\boldsymbol{t}]$ is a linear restriction of the polynomial $p \in \mathbb{R}^{\lambda}[\boldsymbol{x}]$, where $\boldsymbol{a} \in \mathbb{R}^n_+$ and $\boldsymbol{b} \in \mathbb{R}^n$.

Outline

Completely log-concave (Lorentzian) polynomials

- Motivation
- Definition

Properties of completely log-concave polynomials

- Log-concavity and Lorentz signature
- Products of CLC polynomials

3 Reduction to quadratics

- Proof of the reduction
- Corollaries of the reduction

Symbol theorem for CLC polynomials

Outline

Completely log-concave (Lorentzian) polynomials

- Motivation
- Definition

Properties of completely log-concave polynomials

- Log-concavity and Lorentz signature
- Products of CLC polynomials

Reduction to quadratics

- Proof of the reduction
- Corollaries of the reduction

4 Symbol theorem for CLC polynomials

Motivation: Matroid basis-generating polynomials

The spanning trees of G = set of bases of a graphic matroid.

Matroid: $M = (E, \mathcal{I})$ where *E* is the **ground set** and $\mathcal{I} \subseteq 2^{E}$ are the **independent** subsets, which satisfy:

- **1** Nonempty: $\mathcal{I} \neq \emptyset$.
- **2** Hereditary: $B \in \mathcal{I}$ and $A \subseteq B$ implies $A \in \mathcal{I}$.
- **Solution** Exchange/Augmentation: For all $A, B \in \mathcal{I}$ such that |A| < |B|, there exists $e \in B \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

E.g.: A set of vectors in a vector space, with \mathcal{I} given by linearly independent subsets (**linear matroid**). The set of edges of a graph, with \mathcal{I} given by subsets with no cycles (graphic matroid). Many more...

Maximal $B \in \mathcal{I}$ are the bases, $\mathcal{B} \subset \mathcal{I}$, of M. Another definition of M:

Sector Secto

The spanning tree polynomial is a basis-generating polynomial. Others?

Motivation: Hodge-Riemann relations

Adiprasito-Huh-Katz '15: Resolution of the Heron-Rota-Welsh conjecture saying that the coefficients of the characteristic polynomial of a matroid form a log-concave sequence.

Use Hodge-Riemann (HR) relations: These are certain definiteness properties related to various linear maps and their kernels.

Appear in many contexts:

- Cohomology of real forms on compact Kähler manifold [Gromov '90].
- Algebraic cycles modulo homological equivalence on a smooth projective variety [Grothendieck '69].
- McMullen's algebra generated by a simple convex polytope ['93].

The part that is used for the Heron-Rota-Welsh conjecture boils down to a certain quadratic form having **Lorentz signature** (+, -, -, ..., -).

Fact: Hessians of a real stable polynomial $p \in \mathbb{R}_+[x]$ in the positive orthant all have Lorentz signature. **Char. polynomial is not real-rooted.**

Motivation: Mason's strongest conjecture

Conjecture [Mason '75]: If $M = (E, \mathcal{I})$ is a matroid such that |E| = n, and I_k denotes the number of independent sets of M of size k, then $(I_k)_{k=0}^n$ forms an ultra log-concave sequence.

Easy idea: Let's use Newton's inequalities. Need to show that

$$I_M(t) := \sum_{k=0}^n I_k t^k$$

is a real-rooted polynomial. \implies ULC: $\frac{I_{k+1}}{\binom{n}{k+1}} \cdot \frac{I_{k-1}}{\binom{n}{k-1}} \leq \left[\frac{I_k}{\binom{n}{k}}\right]^2$.

Problem: Size of maximum independent set **can be less than** n. $\implies \deg(I_M(t)) =: d < n$. \implies ULC definition **changes**.

Fact: There is an *M* such that $deg(I_M(t)) = d < n$, but the coefficients are **not** ULC with respect to degree d. \implies $I_M(t)$ is **not real-rooted**.

Motivation: Random walks on simplicial complexes

Simplicial complex: Collection X of subsets of E for which $\sigma \in X$ and $\tau \subset \sigma$ implies $\tau \in X$. **E.g.:** Matroids are simplicial complexes.

Local random walks: Random walk on the "1-skeleton" of a given $\sigma \in X$.

Kaufman-Oppenheim '18: Random walk on simplicial complex has large spectral gap if the second largest eigenvalue of the random walk matrix of every 1-skeleton is small (largest eigenvalue is 1).

The point: Large spectral gap implies rapid mixing of the random walk, which implies efficient sampling/counting.

How is this related to polynomials? The 1-skeletons can be associated to multiaffine polynomials, where the choice of σ corresponds to a choice of derivatives. The random walk matrix is related to the Hessian matrix.

Real stable polynomials: Hessians have Lorentz signature. \implies Second largest Hessian eigenvalue ≤ 0 . Other polynomials?

Completely log-concave polynomials

Idea: Combine Lorentz signature with ULC coefficient conditions. **Also:** Want partial derivatives to preserve the property.

Definition (Gurvits '09, Anari-Oveis Gharan-Vinzant '19)

A *d*-homogeneous polynomial $p \in \mathbb{R}_+[x]$ is **completely log-concave (CLC)** if for any choice of $v_1, \ldots, v_k \in \mathbb{R}^n_+$ for any *k*, we have that

$$abla_{\mathbf{v}_1} \cdots \nabla_{\mathbf{v}_k} \mathbf{p} := \left(\sum_i \mathbf{v}_{1i} \partial_{\mathbf{x}_i}\right) \cdots \left(\sum_i \mathbf{v}_{ki} \partial_{\mathbf{x}_i}\right) \mathbf{p}$$

is log-concave in the positive orthant or $\equiv 0$.

Fact: If d = 1, linear with non-negative coefficients \implies trivial. **Fact:** If n = 2, CLC is equivalent to ultra log-concave coefficients. **Fact:** If d = 2, CLC is equivalent to real stability. **E.g.:** Matroid basis polynomials, vol $(\sum_i x_i K_i)$ for convex compact K_i

Equivalent theory of **Lorentzian** polynomials [Brändén-Huh '19] involves matroidal support. (Many equivalent definitions.)

Outline

Completely log-concave (Lorentzian) polynomials

- Motivation
- Definition

Properties of completely log-concave polynomials

- Log-concavity and Lorentz signature
- Products of CLC polynomials

Reduction to quadratics

- Proof of the reduction
- Corollaries of the reduction

4 Symbol theorem for CLC polynomials

Properties of completely log-concave (CLC) polynomials

Proposition

If
$$p,q \in \mathbb{R}_+[\textbf{\textit{x}}]$$
 are CLC polynomials, then

•
$$\nabla_{\boldsymbol{a}} p$$
 for $\boldsymbol{a} \in \mathbb{R}^n_+$ and $p|_{x_i=0}$ are CLC.

- **2** The Hessian $\nabla^2 p(\boldsymbol{a})$ is Lorentz for all $\boldsymbol{a} \in \mathbb{R}^n_+$.
- **(a)** $p(A\mathbf{x})$ is CLC for all $n \times m$ matrices A with non-negative entries.
- $p(\boldsymbol{a} \cdot t + \boldsymbol{b} \cdot s) \in \mathbb{R}_+[t, s]$ is CLC for all $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}_+^n$.
- $p(\mathbf{x}) \cdot q(\mathbf{z}) \in \mathbb{R}_+[\mathbf{x}, \mathbf{z}]$ is CLC.
- $p(\mathbf{x}) \cdot q(\mathbf{x}) \in \mathbb{R}_+[\mathbf{x}]$ is CLC.

Lorentz matrix: Hermitian with signature (+, -, -, ..., -), or in closure.

Note: (1) is straightforward, and (4) follows from (3). **Also:** (6) follows from (3) and (5), via $f(x, z) := p(x) \cdot q(z)$ and

$$p(\mathbf{x}) \cdot q(\mathbf{x}) = f(A\mathbf{x}) := f\left(\begin{bmatrix} I_n & I_n \end{bmatrix}^\top \mathbf{x}\right).$$

Lorentz equivalence: Let $p \in \mathbb{R}_+[x]$ be *d*-homogeneous, and fix some $a \in \mathbb{R}^n_+$ with p(a) > 0. Let $Q := \nabla^2 p(a)$ denote the Hessian at a. TFAE:

- **(**) $\nabla^2 \log p(\mathbf{a})$ is negative semidefinite (log-concavity at \mathbf{a}).
- **2** Q is negative semidefinite on $(Qa)^{\perp}$.
- **③** Q is negative semidefinite on $(Qb)^{\perp}$ for all $b \in \mathbb{R}^n_+$ with p(b) > 0.
- Q is negative semidefinite on some (n-1)-dimensional subspace.
- Q is Lorentz.

Euler's identity: $d \cdot p = \sum_i x_i \partial_{x_i} p$. Apply to $\partial_{x_i} p$ and p to get

$$Q\boldsymbol{a} = (d-1) \cdot \nabla p(\boldsymbol{a}) \quad \text{and} \quad \boldsymbol{a}^{\top} Q \boldsymbol{a} = d(d-1) \cdot p(\boldsymbol{a}).$$

E.g.: $(Q\boldsymbol{a})_j = \sum_i a_i \partial_{x_j} p(\boldsymbol{a}) = (d-1) \cdot \partial_{x_j} p(\boldsymbol{a}).$

This implies $\nabla^2 \log p(\mathbf{a})$ can be written as

$$\frac{p \cdot \nabla^2 p - (\nabla p) \cdot (\nabla p)^\top}{p^2} \bigg|_{\boldsymbol{x} = \boldsymbol{a}} = d(d-1) \cdot \frac{(\boldsymbol{a}^\top Q \boldsymbol{a})Q - \frac{d}{d-1}(Q \boldsymbol{a})(Q \boldsymbol{a})^\top}{(\boldsymbol{a}^\top Q \boldsymbol{a})^2}.$$

To prove: For $Q := \nabla^2 p(a)$, the following are equivalent:

- $\nabla^2 \log p(\mathbf{a})$ is negative semidefinite (log-concavity at \mathbf{a}).
- 2 Q is negative semidefinite on $(Qa)^{\perp}$.
- **③** *Q* is negative semidefinite on $(Qb)^{\perp}$ for all $b \in \mathbb{R}^n_+$ with p(b) > 0.
- Q is negative semidefinite on some (n-1)-dimensional subspace.
- Q is Lorentz.

Recall: $\nabla^2 \log p(\boldsymbol{a}) \cong (\boldsymbol{a}^\top Q \boldsymbol{a}) \cdot Q - \frac{d}{d-1} \cdot (Q \boldsymbol{a}) (Q \boldsymbol{a})^\top$ and $\boldsymbol{a}^\top Q \boldsymbol{a} > 0$.

(1) \implies (2): First, for all $\boldsymbol{z} \in (\boldsymbol{Q}\boldsymbol{a})^{\perp} \iff \boldsymbol{z}^{\top}\boldsymbol{Q}\boldsymbol{a} = 0$ we have

$$0 \geq \boldsymbol{z}^{\top} \left[(\boldsymbol{a}^{\top} \boldsymbol{Q} \boldsymbol{a}) \cdot \boldsymbol{Q} - \frac{d}{d-1} \cdot (\boldsymbol{Q} \boldsymbol{a}) (\boldsymbol{Q} \boldsymbol{a})^{\top} \right] \boldsymbol{z} = (\boldsymbol{a}^{\top} \boldsymbol{Q} \boldsymbol{a}) \cdot (\boldsymbol{z}^{\top} \boldsymbol{Q} \boldsymbol{z}).$$

(2) \implies (4): $(Qa)^{\top}$ is an (n-1)-dimensional subspace.

(4) \implies (5): By assumption Q has at most one positive eigenvalue. Since entries of Q are non-negative, Q has at least one non-negative eigenvalue.

Jonathan Leake (TU Berlin)

Lorentzian Polynomials

To prove: For $Q := \nabla^2 p(a)$, the following are equivalent:

- **1** $\nabla^2 \log p(\mathbf{a})$ is negative semidefinite (log-concavity at \mathbf{a}).
- 2 Q is negative semidefinite on $(Qa)^{\perp}$.
- **③** *Q* is negative semidefinite on $(Qb)^{\perp}$ for all $b \in \mathbb{R}^n_+$ with p(b) > 0.
- **(**) Q is negative semidefinite on some (n-1)-dimensional subspace.
- Q is Lorentz.

Recall: $\nabla^2 \log p(\boldsymbol{a}) \cong (\boldsymbol{a}^\top Q \boldsymbol{a}) \cdot Q - \frac{d}{d-1} \cdot (Q \boldsymbol{a})(Q \boldsymbol{a})^\top \text{ and } \boldsymbol{a}^\top Q \boldsymbol{a} > 0.$

(5) \implies (1): Let *P* be the $n \times 2$ matrix with columns *a* and $z \in \mathbb{R}^n$:

$$P^{\top}QP = \begin{bmatrix} \boldsymbol{a}^{\top}Q\boldsymbol{a} & \boldsymbol{a}^{\top}Q\boldsymbol{z} \\ \boldsymbol{z}^{\top}Q\boldsymbol{a} & \boldsymbol{z}^{\top}Q\boldsymbol{z} \end{bmatrix} \implies \det(P^{\top}QP) \gtrsim \boldsymbol{z}^{\top}[\nabla^{2}\log p(\boldsymbol{a})]\boldsymbol{z}.$$

So: Want to show det($P^{\top}QP$) ≤ 0 . **Enough to show** $P^{\top}QP$ is not PD, since $a^{\top}Qa > 0$ implies $P^{\top}QP$ is not NSD.

But: $P^{\top}QP$ cannot be PD, or else Q would have two positive eigenvalues.

To prove: For $Q := \nabla^2 p(a)$, the following are equivalent:

- $\nabla^2 \log p(\mathbf{a})$ is negative semidefinite (log-concavity at \mathbf{a}).
- 2 Q is negative semidefinite on $(Qa)^{\perp}$.
- **③** *Q* is negative semidefinite on $(Qb)^{\perp}$ for all $b \in \mathbb{R}^n_+$ with p(b) > 0.
- Q is negative semidefinite on some (n-1)-dimensional subspace.
- Q is Lorentz.

Recall: $\nabla^2 \log p(\boldsymbol{a}) \cong (\boldsymbol{a}^\top Q \boldsymbol{a}) \cdot Q - \frac{d}{d-1} \cdot (Q \boldsymbol{a}) (Q \boldsymbol{a})^\top \text{ and } \boldsymbol{a}^\top Q \boldsymbol{a} > 0.$

(2) \implies (3): Note that both conditions only depend on the matrix Q. Consider the polynomial $q(\mathbf{x}) := \frac{1}{2}\mathbf{x}^{\top}Q\mathbf{x}$, which is such that

$$abla^2 q(\boldsymbol{a}) = Q =
abla^2 q(\boldsymbol{b})$$
 for all \boldsymbol{b} .

So applying the equivalence (2) \iff (4) to q and $Q' := \nabla^2 q(\mathbf{b})$ says that Q' is negative semidefinite on $(Q'\mathbf{b})^{\perp}$ since Q' = Q is negative semidefinite on the (n-1)-dimensional subspace $(Q\mathbf{a})^{\perp}$.

Proposition

If $p, q \in \mathbb{R}_+[\mathbf{x}]$ are CLC polynomials, then

- $\ \, \bullet \ \, \nabla_{\boldsymbol{a}} p \ \, \text{for} \ \, \boldsymbol{a} \in \mathbb{R}^n_+ \ \, \text{and} \ \, p|_{x_i=0} \ \, \text{are CLC}.$
- **2** The Hessian $\nabla^2 p(\boldsymbol{a})$ is Lorentz for all $\boldsymbol{a} \in \mathbb{R}^n_+$.
- **(a)** $p(A\mathbf{x})$ is CLC for all $n \times m$ matrices A with non-negative entries.
- $p(\boldsymbol{a} \cdot t + \boldsymbol{b} \cdot s) \in \mathbb{R}_+[t, s]$ is CLC for all $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}_+^n$.

5
$$p(\mathbf{x}) \cdot q(\mathbf{z}) \in \mathbb{R}_+[\mathbf{x}, \mathbf{z}]$$
 is CLC.

• $p(\mathbf{x}) \cdot q(\mathbf{x}) \in \mathbb{R}_+[\mathbf{x}]$ is CLC.

Bonus: A quadratic homogeneous polynomial $p(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x}$ is CLC if and only if A is Lorentz.

Next: $p(A\mathbf{x})$ and products.

Precomposition by positive linear action preserves CLC

Fact: If $p \in \mathbb{R}_+[x_1, \dots, x_n]$ is CLC and A is an $n \times m$ matrix with non-negative entries, then $p(A\mathbf{x}) \in \mathbb{R}_+[x_1, \dots, x_m]$ is CLC.

Proof: For any $\boldsymbol{v} \in \mathbb{R}^m_+$, we have

$$\nabla_{\mathbf{v}} \left[p(A\mathbf{x}) \right] = \sum_{j=1}^{m} v_j \partial_{x_j} \left[p\left(\sum_{k=1}^{m} a_{1k} x_k, \dots, \sum_{k=1}^{m} a_{nk} x_k \right) \right]$$
$$= \sum_{j=1}^{m} v_j \left[\left(\sum_{i=1}^{n} a_{ij} \partial_{x_i} \right) p \right] (A\mathbf{x}) = \left[\left(\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} v_j \partial_{x_i} \right) p \right] (A\mathbf{x}).$$

To complete the proof, need to show that $p(A\mathbf{x})$ is log-concave in the positive orthant whenever p is:

$$\log p(A[t \cdot \mathbf{x} + (1-t) \cdot \mathbf{y}]) = \log p(t \cdot (A\mathbf{x}) + (1-t) \cdot (A\mathbf{y}))$$

 $\geq t \cdot \log p(A\mathbf{x}) + (1-t) \cdot \log p(A\mathbf{y}).$

Products of CLC polynomials are CLC

Lemma (sum-of-CLCs): If $p, q \in \mathbb{R}_+[x]$ are *d*-homog. CLC polynomials such that $\nabla_b p = \nabla_c q \neq 0$ for some $b, c \in \mathbb{R}^n_+$, then p + q is CLC.

Corollary: If p(x) and q(z) are CLC, then so is $p(x) \cdot q(z)$.

Proof: Log-concavity is straightforward, since the log of a product is the sum of logs. By induction, for any $\boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^n_+$

$$\nabla_{(\boldsymbol{b},\boldsymbol{c})}\left[p(\boldsymbol{x})\cdot q(\boldsymbol{z})\right] = \nabla_{\boldsymbol{b}}p(\boldsymbol{x})\cdot q(\boldsymbol{z}) + p(\boldsymbol{x})\cdot\nabla_{\boldsymbol{c}}q(\boldsymbol{z})$$

is a sum of CLC polynomials. Further,

$$\nabla_{(\mathbf{0},c)} \left[\nabla_{b} p(\mathbf{x}) \cdot q(\mathbf{z}) \right] = \nabla_{b} p(\mathbf{x}) \cdot \nabla_{c} q(\mathbf{z}) = \nabla_{(b,0)} \left[p(\mathbf{x}) \cdot \nabla_{c} q(\mathbf{z}) \right].$$

Therefore the sum-of-CLCs lemma applies if $\nabla_{\boldsymbol{b}} p(\boldsymbol{x}) \cdot \nabla_{\boldsymbol{c}} q(\boldsymbol{z}) \neq 0$. If $\nabla_{\boldsymbol{b}} p(\boldsymbol{x}) \cdot \nabla_{\boldsymbol{c}} q(\boldsymbol{z}) \equiv 0$, then one of the polynomials in the above sum is 0.

Proof of the sum-of-CLCs lemma

Lemma (sum-of-CLCs): If $p, q \in \mathbb{R}_+[x]$ are *d*-homog. CLC polynomials such that $\nabla_{\boldsymbol{b}} p = \nabla_{\boldsymbol{c}} q \neq 0$ for some $\boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^n_+$, then p + q is CLC.

Proof of Lemma: By induction on degree, for all $a \in \mathbb{R}^n_{>0}$ we have

$$abla_{m{b}}(
abla_{m{a}}p) =
abla_{m{c}}(
abla_{m{a}}q) \implies
abla_{m{a}}(p+q) \quad \text{is CLC.}$$

So we just need to show that p + q is log-concave in the positive orthant. For any $\boldsymbol{a} \in \mathbb{R}^n_{>0}$, define $Q_1 := \nabla^2 p(\boldsymbol{a})$ and $Q_2 := \nabla^2 q(\boldsymbol{a})$ to get

$$(Q_1 \boldsymbol{b})_j = \sum_i b_i \partial_{x_i} \partial_{x_j} p(\boldsymbol{a}) = \partial_{x_j} \nabla_{\boldsymbol{b}} p(\boldsymbol{a}) = \partial_{x_j} \nabla_{\boldsymbol{c}} q(\boldsymbol{a}) = (Q_2 \boldsymbol{c})_j.$$

That is $Q_1 \boldsymbol{b} = Q_2 \boldsymbol{c} \neq \boldsymbol{0}$. Log-concavity of p, q then implies Q_1 and Q_2 are both NSD on $(Q_1 \boldsymbol{b})^{\perp} = (Q_2 \boldsymbol{c})^{\perp}$ by the Lorentz equivalence.

Therefore $Q_1 + Q_2 = \nabla^2 [p+q](a)$ is NSD on this (n-1)-dimensional subspace, which implies $\nabla^2 \log[p+q](a)$ is NSD by Lorentz equivalence.

Properties of CLC polynomials, revisited

Proposition

If $\textit{p}, \textit{q} \in \mathbb{R}_+[\textit{\textbf{x}}]$ are CLC polynomials, then

- $\nabla_{\boldsymbol{a}} p$ for $\boldsymbol{a} \in \mathbb{R}^n_+$ and $p|_{x_i=0}$ are CLC.
- **2** The Hessian $\nabla^2 p(a)$ is Lorentz for all $a \in \mathbb{R}^n_+$.
- **(a)** $p(A\mathbf{x})$ is CLC for all $n \times m$ matrices A with non-negative entries.
- $p(\boldsymbol{a} \cdot t + \boldsymbol{b} \cdot s) \in \mathbb{R}_+[t, s]$ is CLC for all $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}_+^n$.
- $\ \, {\boldsymbol{\flat}} \ \, p({\boldsymbol{x}}) \cdot q({\boldsymbol{z}}) \in \mathbb{R}_+[{\boldsymbol{x}},{\boldsymbol{z}}] \ \, \text{is CLC}.$
- $p(\mathbf{x}) \cdot q(\mathbf{x}) \in \mathbb{R}_+[\mathbf{x}]$ is CLC.

Lemma (sum-of-CLCs)

If $p, q \in \mathbb{R}_+[x]$ are d-homogeneous CLC polynomials such that $\nabla_{\boldsymbol{b}} p = \nabla_{\boldsymbol{c}} q \not\equiv 0$ for some $\boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^n_+$, then p + q is CLC.

Two main corollaries: Reduction to quadratics and symbol theorem.

Outline

Completely log-concave (Lorentzian) polynomials

- Motivation
- Definition

Properties of completely log-concave polynomials

- Log-concavity and Lorentz signature
- Products of CLC polynomials

3 Reduction to quadratics

- Proof of the reduction
- Corollaries of the reduction

4 Symbol theorem for CLC polynomials

Theorem (Anari-Oveis Gharan-Vinzant '19; see also Brändén-Huh '19)

A d-homogeneous polynomial $p \in \mathbb{R}_+[\mathbf{x}]$ is CLC iff:

- For all $\mu \in \mathbb{Z}^n_+$ with $|\mu| \le d-2$, $\partial^{\mu}_{x}p$ is indecomposable.
- **2** For all $\mu \in \mathbb{Z}^n_+$ with $|\mu| = d 2$, $\partial^{\mu}_x p$ is log-concave in \mathbb{R}^n_+ .

Indecomposable polynomial: p cannot be written as p = f + g where $f, g \neq 0$ depend on disjoint variables.

Easy direction (\Longrightarrow): If $\partial_x^\mu \rho$ is decomposable and of degree d', then

$$abla_1^{d'-2}(\partial_x^{\mu} p) =
abla_1^{d'-2}(f+g) =
abla_1^{d'-2}f +
abla_1^{d'-2}g$$

is a decomposable quadratic form. Therefore $p(\mathbf{x}) = \mathbf{x}^{\top} \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \mathbf{x}$, where A, B are Lorentz matrices since f and g are CLC (plug in 0). **Contradiction:** Hessian of p has two positive eigenvalues.

Proof of reduction to quadratics, harder direction

Simplify: Assume that $p_{\mu} > 0$ for all $|\mu| = d$. \implies Stronger than indecomposable. (One can limit the positive coefficients case to the general indecomposable case, but this is **not obvious** [Brändén-Huh '19].)

Lemma: If $\partial_{x_i} p$ is CLC for all *i*, then $\nabla_{\boldsymbol{a}} p$ is CLC for all $\boldsymbol{a} \in \mathbb{R}^n_+$. **Proof:** First assume $\boldsymbol{a} > \boldsymbol{0}$, and let $D_k := \sum_{i=1}^k a_i \partial_{x_i}$. Assume by induction that $D_k p$ is CLC. By the sum-of-CLCs lemms, we have that

$$egin{aligned} \mathsf{a}_{k+1}\partial_{x_{k+1}}(D_kp) &= D_k(\mathsf{a}_{k+1}\partial_{x_{k+1}}p) \ &\implies D_{k+1}p = (D_k + \mathsf{a}_{k+1}\partial_{x_{k+1}})p ext{ is CLC.} \end{aligned}$$

Note that sum-of-CLCs applies because $\partial_{x_{k+1}}(D_k p) \neq 0$, since $p_{\mu} > 0$. For $a \in \mathbb{R}^n_+$ we simply skip the entries of a which are 0.

Including indecomposability: Need to order the variables in such a way so that $\partial_{x_{k+1}}(D_k p) \neq 0$. (Exercise.)

Proof of reduction to quadratics, harder direction

Theorem (Anari-Oveis Gharan-Vinzant '19; see also Brändén-Huh '19)

A d-homogeneous polynomial $p \in \mathbb{R}_+[x]$ is CLC iff:

• For all $\mu \in \mathbb{Z}^n_+$ with $|\mu| \le d-2$, $\partial^{\mu}_x p$ is indecomposable.

2 For all $\mu \in \mathbb{Z}^n_+$ with $|\mu| = d - 2$, $\partial^{\mu}_{\mathbf{x}} p$ is log-concave in \mathbb{R}^n_+ .

Assume: $p_{\mu} > 0$ for all $|\mu| = d$. **Lemma:** If $\partial_{x_i} p$ is CLC for all *i*, then $\nabla_a p$ is CLC for all $a \in \mathbb{R}^n_+$.

Other direction (\Leftarrow): It suffices to show that p is log-concave in \mathbb{R}^n_+ and that ∇_{ap} is CLC for all $a \in \mathbb{R}^n_+$. By induction on degree, $\partial_{x_i}p$ is CLC for all i. Thus the lemma applies, and ∇_{ap} is CLC for all $a \in \mathbb{R}^n_+$.

The log-concavity of p then follows from the fact that p is log-concave at a iff $\nabla_a p$ is log-concave at a. Why? Lorentz equiv. and Euler's identity:

$$\nabla^2 [\nabla_{\boldsymbol{a}} \boldsymbol{p}](\boldsymbol{a}) = \left[\sum_i a_i \partial_{x_j} \partial_{x_k} \partial_{x_i} \boldsymbol{p}(\boldsymbol{a})\right]_{j,k=1}^n = \left[\partial_{x_j} \partial_{x_k} \boldsymbol{p}(\boldsymbol{a})\right]_{j,k=1}^n = \nabla^2 \boldsymbol{p}(\boldsymbol{a}).$$

Corollaries of the reduction to quadratics: real stability

Fact: If the quadratic form $p(\mathbf{x}) := \mathbf{x}^{\top} A \mathbf{x} \in \mathbb{R}^n_+[\mathbf{x}]$ is real stable, then A is Lorentz. (Note that A is the constant Hessian of p in this case.) **Corollary:** Homogeneous real stable polynomials are CLC.

Proof for quadratics: By Perron-Frobenius, *A* has an eigenvalue $\lambda_1 > 0$ with corresponding eigenvector **a** which has non-negative entries. Suppose *A* has a second positive eigenvalue λ_2 with corresponding eigenvector **b**.

Contradiction: This implies the linear restriction $p(a \cdot t + b)$ has no zeros.

Note: Perron-Frobenius usually requires strictly positive entries. However, indecomposability implies Perron-Frobenius can be used. **This is one possible intuition for indecomposability.**

Note: The converse is also true: A quadratic is real stable if and only if the associated matrix is Lorentz. Actually, many equivalences at the level of quadratics. **Proof:** Exercise.

Corollaries of the quadratic reduction: ULC

Fact: Homogeneous $p \in \mathbb{R}_+[x_1, x_2]$ is CLC iff its coefficients are ULC.

Proof: Follows directly from the reduction to quadratics:

- Indecomposable: Equivalent to having no internal zeros in coefficient sequence. (Take derivatives until ax₁^k + bx₂^j with |k − j| ≥ 2 and a, b ≠ 0.)
- Quadratic derivatives: Each derivative of degree d 2 picks out a sequence of 3 coefficients in p. We just need to show that these quadratics have non-negative discriminant to prove ULC. A bivariate quadratic form looks like:

$$\mathbf{x}^{\top} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \mathbf{x} = ax_1^2 + 2bx_1x_2 + cx_2^2$$

This matrix is Lorentz iff det ≤ 0 iff $ac \leq b^2$ iff $(2b)^2 - 4ac \geq 0$.

Outline

Completely log-concave (Lorentzian) polynomials

- Motivation
- Definition

Properties of completely log-concave polynomials

- Log-concavity and Lorentz signature
- Products of CLC polynomials

Reduction to quadratics

- Proof of the reduction
- Corollaries of the reduction

Symbol theorem for CLC polynomials

Symbol theorem for multiaffine CLC polynomials

Definition: The symbol of a linear operator $T : \mathbb{R}^1_+[x] \to \mathbb{R}_+[x]$:

Symb^{$$\lambda$$}[T](\mathbf{x}, \mathbf{z}) := T $\left[\prod_{i=1}^{n} (x_i + z_i)\right] = \sum_{\mu \leq 1} \mathbf{z}^{1-\mu} T[\mathbf{x}^{\mu}]$

Here ${\mathcal T}$ acts only on ${\pmb x}$ and ${\pmb \mu} \leq {\pmb 1}$ is entrywise.

Theorem (Anari-Liu-Oveis Gharan-Vinzant '19, Brändén-Huh '19)

For a given linear operator $T : \mathbb{R}^1_+[\mathbf{x}] \to \mathbb{R}_+[\mathbf{x}]$, we have that T preserves *CLC* (allowing $\equiv 0$) if Symb¹[T](\mathbf{x}, \mathbf{z}) is *CLC*.

Proof:
$$T[p](\mathbf{x}) = \prod_{i=1}^{n} (\partial_{z_i} + \partial_{t_i})|_{z_i=t_i=0} \left[\text{Symb}^1[T](\mathbf{x}, \mathbf{z}) \cdot p(\mathbf{t}) \right].$$

Corollary: Homogeneous real stability preservers preserve CLC.

Fact: Polarization also preserves CLC. \implies More general symbol theorem follows from the same polarization techniques as in the real stable case.