Completely Log-concave (Lorentzian) Polynomials Polynomial Capacity: Theory, Applications, Generalizations

Jonathan Leake
Technische Universität Berlin

November 26th, 2020

Notation

Polynomial notation:

- $\mathbb{R}, \mathbb{R}_{+}, \mathbb{C}, \mathbb{Z}_{+}:=$reals, non-negative reals, complex numbers, non-negative integers.
- $\boldsymbol{x}^{\mu}:=\prod_{i} x_{i}^{\mu_{i}}$ and $\boldsymbol{\mu} \leq \boldsymbol{\lambda}$ is entrywise.
- $\mathbb{R}[\boldsymbol{x}]:=$ v.s. of real polynomials in n variables.
- $\mathbb{R}_{+}[\boldsymbol{x}]:=$ v.s. of real polynomials with non-negative coefficients.
- $\mathbb{R}^{\lambda}[\boldsymbol{x}]:=\mathrm{v}$.s. of polynomials of degree at most λ_{i} in x_{i}.
- For $p \in \mathbb{R}[\boldsymbol{x}]$, we write $p(\boldsymbol{x})=\sum_{\mu} p_{\mu} \boldsymbol{x}^{\mu}$.
- For d-homogeneous $p \in \mathbb{R}[\boldsymbol{x}]$, we write $p(\boldsymbol{x})=\sum_{|\mu|=d} p_{\mu} \boldsymbol{x}^{\mu}$.
- The support of p is the set of $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$ for which $p_{\mu} \neq 0$.
- $\frac{d}{d x}=\frac{\partial}{\partial x}=\partial_{x}:=$ derivative with respect to x, and $\partial_{\boldsymbol{x}}^{\mu}:=\prod_{i} \partial_{x_{i}}^{\mu_{i}}$.
- $p(\boldsymbol{a} \cdot t+\boldsymbol{b})=p\left(a_{1} t+b_{1}, \ldots, a_{n} t+b_{n}\right) \in \mathbb{R}^{\lambda_{1}+\cdots+\lambda_{n}}[t]$ is a linear restriction of the polynomial $p \in \mathbb{R}^{\boldsymbol{\lambda}}[\boldsymbol{x}]$, where $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$ and $\boldsymbol{b} \in \mathbb{R}^{n}$.

Outline

(1) Completely log-concave (Lorentzian) polynomials

- Motivation
- Definition
(2) Properties of completely log-concave polynomials
- Log-concavity and Lorentz signature
- Products of CLC polynomials
(3) Reduction to quadratics
- Proof of the reduction
- Corollaries of the reduction
(4) Symbol theorem for CLC polynomials

Outline

(1) Completely log-concave (Lorentzian) polynomials

- Motivation
- Definition
(2) Properties of completely log-concave polynomials
- Log-concavity and Lorentz signature
- Products of CLC polynomials
(3) Reduction to quadratics
- Proof of the reduction
- Corollaries of the reduction
(4) Symbol theorem for CLC polynomials

Motivation: Matroid basis-generating polynomials

The spanning trees of $G=$ set of bases of a graphic matroid.
Matroid: $M=(E, \mathcal{I})$ where E is the ground set and $\mathcal{I} \subseteq 2^{E}$ are the independent subsets, which satisfy:
(1) Nonempty: $\mathcal{I} \neq \varnothing$.
(2) Hereditary: $B \in \mathcal{I}$ and $A \subseteq B$ implies $A \in \mathcal{I}$.
(3) Exchange/Augmentation: For all $A, B \in \mathcal{I}$ such that $|A|<|B|$, there exists $e \in B \backslash A$ such that $A \cup\{e\} \in \mathcal{I}$.
E.g.: A set of vectors in a vector space, with \mathcal{I} given by linearly independent subsets (linear matroid). The set of edges of a graph, with \mathcal{I} given by subsets with no cycles (graphic matroid). Many more...

Maximal $B \in \mathcal{I}$ are the bases, $\mathcal{B} \subset \mathcal{I}$, of M. Another definition of M :
(3) Exchange: For any bases $B_{1}, B_{2} \in \mathcal{B}$ and any $e_{1} \in B_{1} \backslash B_{2}$, there exists $e_{2} \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash\left\{e_{1}\right\}\right) \cup\left\{e_{2}\right\} \in \mathcal{B}$.
The spanning tree polynomial is a basis-generating polynomial. Others?

Motivation: Hodge-Riemann relations

Adiprasito-Huh-Katz '15: Resolution of the Heron-Rota-Welsh conjecture saying that the coefficients of the characteristic polynomial of a matroid form a log-concave sequence.

Use Hodge-Riemann (HR) relations: These are certain definiteness properties related to various linear maps and their kernels.

Appear in many contexts:

- Cohomology of real forms on compact Kähler manifold [Gromov '90].
- Algebraic cycles modulo homological equivalence on a smooth projective variety [Grothendieck '69].
- McMullen's algebra generated by a simple convex polytope ['93].

The part that is used for the Heron-Rota-Welsh conjecture boils down to a certain quadratic form having Lorentz signature $(+,-,-, \ldots,-)$.

Fact: Hessians of a real stable polynomial $p \in \mathbb{R}_{+}[\boldsymbol{x}]$ in the positive orthant all have Lorentz signature. Char. polynomial is not real-rooted.

Motivation: Mason's strongest conjecture

Conjecture [Mason '75]: If $M=(E, \mathcal{I})$ is a matroid such that $|E|=n$, and I_{k} denotes the number of independent sets of M of size k, then $\left(I_{k}\right)_{k=0}^{n}$ forms an ultra log-concave sequence.

Easy idea: Let's use Newton's inequalities. Need to show that

$$
I_{M}(t):=\sum_{k=0}^{n} I_{k} t^{k}
$$

is a real-rooted polynomial. \Longrightarrow ULC: $\frac{I_{k+1}}{\binom{n}{k+1}} \cdot \frac{I_{k-1}}{\left(\begin{array}{c}n-1\end{array}\right)} \leq\left[\begin{array}{c}\left.\frac{I_{k}}{n} \begin{array}{l}n \\ k\end{array}\right]^{2} \text {. }\end{array}\right.$
Problem: Size of maximum independent set can be less than n. $\Longrightarrow \operatorname{deg}\left(I_{M}(t)\right)=: d<n . \Longrightarrow$ ULC definition changes.

Fact: There is an M such that $\operatorname{deg}\left(I_{M}(t)\right)=d<n$, but the coefficients are not ULC with respect to degree $d . \Longrightarrow I_{M}(t)$ is not real-rooted.

Motivation: Random walks on simplicial complexes

Simplicial complex: Collection X of subsets of E for which $\sigma \in X$ and $\tau \subset \sigma$ implies $\tau \in X$. E.g.: Matroids are simplicial complexes.

Local random walks: Random walk on the "1-skeleton" of a given $\sigma \in X$.
Kaufman-Oppenheim '18: Random walk on simplicial complex has large spectral gap if the second largest eigenvalue of the random walk matrix of every 1 -skeleton is small (largest eigenvalue is 1).

The point: Large spectral gap implies rapid mixing of the random walk, which implies efficient sampling/counting.

How is this related to polynomials? The 1 -skeletons can be associated to multiaffine polynomials, where the choice of σ corresponds to a choice of derivatives. The random walk matrix is related to the Hessian matrix.

Real stable polynomials: Hessians have Lorentz signature.
\Longrightarrow Second largest Hessian eigenvalue ≤ 0. Other polynomials?

Completely log-concave polynomials

Idea: Combine Lorentz signature with ULC coefficient conditions.
Also: Want partial derivatives to preserve the property.

Definition (Gurvits '09, Anari-Oveis Gharan-Vinzant '19)

A d-homogeneous polynomial $p \in \mathbb{R}_{+}[\boldsymbol{x}]$ is completely log-concave (CLC) if for any choice of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}_{+}^{n}$ for any k, we have that

$$
\nabla_{\boldsymbol{v}_{1}} \cdots \nabla_{\boldsymbol{v}_{k}} p:=\left(\sum_{i} v_{1 i} \partial_{x_{i}}\right) \cdots\left(\sum_{i} v_{k i} \partial_{x_{i}}\right) p
$$

is log-concave in the positive orthant or $\equiv 0$.
Fact: If $d=1$, linear with non-negative coefficients \Longrightarrow trivial.
Fact: If $n=2$, CLC is equivalent to ultra log-concave coefficients.
Fact: If $d=2, \mathrm{CLC}$ is equivalent to real stability.
E.g.: Matroid basis polynomials, vol $\left(\sum_{i} x_{i} K_{i}\right)$ for convex compact K_{i}

Equivalent theory of Lorentzian polynomials [Brändén-Huh '19] involves matroidal support. (Many equivalent definitions.)

Outline

(1) Completely log-concave (Lorentzian) polynomials

- Motivation
- Definition
(2) Properties of completely log-concave polynomials
- Log-concavity and Lorentz signature
- Products of CLC polynomials
(3) Reduction to quadratics
- Proof of the reduction
- Corollaries of the reduction

4 Symbol theorem for CLC polynomials

Properties of completely log-concave (CLC) polynomials

Proposition

If $p, q \in \mathbb{R}_{+}[\boldsymbol{x}]$ are CLC polynomials, then
(1) $\nabla_{a} p$ for $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$ and $\left.p\right|_{x_{i}=0}$ are CLC.
(2) The Hessian $\nabla^{2} p(\boldsymbol{a})$ is Lorentz for all $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$.
(3) $p(A \boldsymbol{x})$ is CLC for all $n \times m$ matrices A with non-negative entries.
(4) $p(\boldsymbol{a} \cdot t+\boldsymbol{b} \cdot s) \in \mathbb{R}_{+}[t, s]$ is CLC for all $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}_{+}^{n}$.
(3) $p(x) \cdot q(z) \in \mathbb{R}_{+}[\boldsymbol{x}, \boldsymbol{z}]$ is CLC.
(6) $p(\boldsymbol{x}) \cdot q(\boldsymbol{x}) \in \mathbb{R}_{+}[\boldsymbol{x}]$ is CLC.

Lorentz matrix: Hermitian with signature $(+,-,-, \ldots,-)$, or in closure.
Note: (1) is straightforward, and (4) follows from (3).
Also: (6) follows from (3) and (5), via $f(\boldsymbol{x}, \boldsymbol{z}):=p(\boldsymbol{x}) \cdot q(\boldsymbol{z})$ and

$$
p(\boldsymbol{x}) \cdot q(\boldsymbol{x})=f(A \boldsymbol{x}):=f\left(\left[\begin{array}{ll}
I_{n} & I_{n}
\end{array}\right]^{\top} \boldsymbol{x}\right)
$$

Log-concavity and Lorentz signature

Lorentz equivalence: Let $p \in \mathbb{R}_{+}[\boldsymbol{x}]$ be d-homogeneous, and fix some $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$ with $p(\boldsymbol{a})>0$. Let $Q:=\nabla^{2} p(\boldsymbol{a})$ denote the Hessian at \boldsymbol{a}. TFAE:
(1) $\nabla^{2} \log p(\boldsymbol{a})$ is negative semidefinite (log-concavity at \boldsymbol{a}).
(2) Q is negative semidefinite on $(Q a)^{\perp}$.
(3) Q is negative semidefinite on $(Q \boldsymbol{b})^{\perp}$ for all $\boldsymbol{b} \in \mathbb{R}_{+}^{n}$ with $p(\boldsymbol{b})>0$.
(9) Q is negative semidefinite on some $(n-1)$-dimensional subspace.
(5) Q is Lorentz.

Euler's identity: $d \cdot p=\sum_{i} x_{i} \partial_{x_{i}} p$. Apply to $\partial_{x_{j}} p$ and p to get

$$
Q \boldsymbol{a}=(d-1) \cdot \nabla p(\boldsymbol{a}) \quad \text { and } \quad \mathbf{a}^{\top} Q \mathbf{a}=d(d-1) \cdot p(\boldsymbol{a})
$$

E.g.: $(Q a)_{j}=\sum_{i} a_{i} \partial_{x_{i}} \partial_{x_{j}} p(\boldsymbol{a})=(d-1) \cdot \partial_{x_{j}} p(\boldsymbol{a})$.

This implies $\nabla^{2} \log p(\boldsymbol{a})$ can be written as

$$
\left.\frac{p \cdot \nabla^{2} p-(\nabla p) \cdot(\nabla p)^{\top}}{p^{2}}\right|_{x=\boldsymbol{a}}=d(d-1) \cdot \frac{\left(\mathbf{a}^{\top} Q \mathbf{a}\right) Q-\frac{d}{d-1}(Q \mathbf{a})(Q \mathbf{a})^{\top}}{\left(\mathbf{a}^{\top} Q \boldsymbol{a}\right)^{2}}
$$

Log-concavity and Lorentz signature

To prove: For $Q:=\nabla^{2} p(a)$, the following are equivalent:
(1) $\nabla^{2} \log p(\boldsymbol{a})$ is negative semidefinite (log-concavity at \boldsymbol{a}).
(2) Q is negative semidefinite on $(Q a)^{\perp}$.
(3) Q is negative semidefinite on $(Q \boldsymbol{b})^{\perp}$ for all $\boldsymbol{b} \in \mathbb{R}_{+}^{n}$ with $p(\boldsymbol{b})>0$.
(4) Q is negative semidefinite on some $(n-1)$-dimensional subspace.
(5) Q is Lorentz.

Recall: $\nabla^{2} \log p(\boldsymbol{a}) \cong\left(\mathbf{a}^{\top} Q \mathbf{a}\right) \cdot Q-\frac{d}{d-1} \cdot(Q \mathbf{a})(Q \boldsymbol{a})^{\top}$ and $\mathbf{a}^{\top} Q \boldsymbol{a}>0$.
(1) \Longrightarrow (2): First, for all $\boldsymbol{z} \in(Q \boldsymbol{a})^{\perp} \Longleftrightarrow \boldsymbol{z}^{\top} Q \boldsymbol{a}=0$ we have

$$
0 \geq z^{\top}\left[\left(a^{\top} Q a\right) \cdot Q-\frac{d}{d-1} \cdot(Q a)(Q a)^{\top}\right] z=\left(a^{\top} Q a\right) \cdot\left(z^{\top} Q z\right)
$$

$(2) \Longrightarrow(4):(Q \boldsymbol{a})^{\top}$ is an $(n-1)$-dimensional subspace.
$(4) \Longrightarrow(5)$: By assumption Q has at most one positive eigenvalue. Since entries of Q are non-negative, Q has at least one non-negative eigenvalue.

Log-concavity and Lorentz signature

To prove: For $Q:=\nabla^{2} p(a)$, the following are equivalent:
(1) $\nabla^{2} \log p(\boldsymbol{a})$ is negative semidefinite (log-concavity at \boldsymbol{a}).
(2) Q is negative semidefinite on $(Q a)^{\perp}$.
(3) Q is negative semidefinite on $(Q \boldsymbol{b})^{\perp}$ for all $\boldsymbol{b} \in \mathbb{R}_{+}^{n}$ with $p(\boldsymbol{b})>0$.
(4) Q is negative semidefinite on some $(n-1)$-dimensional subspace.
(5) Q is Lorentz.

Recall: $\nabla^{2} \log p(\boldsymbol{a}) \cong\left(\boldsymbol{a}^{\top} Q \boldsymbol{a}\right) \cdot Q-\frac{d}{d-1} \cdot(Q \boldsymbol{a})(Q \boldsymbol{a})^{\top}$ and $\boldsymbol{a}^{\top} Q \boldsymbol{a}>0$.
(5) $\Longrightarrow(1)$: Let P be the $n \times 2$ matrix with columns \boldsymbol{a} and $\boldsymbol{z} \in \mathbb{R}^{n}$:

$$
P^{\top} Q P=\left[\begin{array}{ll}
\mathbf{a}^{\top} Q \boldsymbol{a} & \mathbf{a}^{\top} Q \boldsymbol{z} \\
\boldsymbol{z}^{\top} Q \boldsymbol{a} & \boldsymbol{z}^{\top} Q \boldsymbol{z}
\end{array}\right] \Longrightarrow \operatorname{det}\left(P^{\top} Q P\right) \gtrsim \boldsymbol{z}^{\top}\left[\nabla^{2} \log p(\boldsymbol{a})\right] \boldsymbol{z} .
$$

So: Want to show $\operatorname{det}\left(P^{\top} Q P\right) \leq 0$. Enough to show $P^{\top} Q P$ is not $P D$, since $\boldsymbol{a}^{\top} Q \boldsymbol{a}>0$ implies $P^{\top} Q P$ is not NSD.
But: $P^{\top} Q P$ cannot be $P D$, or else Q would have two positive eigenvalues.

Log-concavity and Lorentz signature

To prove: For $Q:=\nabla^{2} p(a)$, the following are equivalent:
(1) $\nabla^{2} \log p(\boldsymbol{a})$ is negative semidefinite (log-concavity at \boldsymbol{a}).
(2) Q is negative semidefinite on $(Q a)^{\perp}$.
(3) Q is negative semidefinite on $(Q \boldsymbol{b})^{\perp}$ for all $\boldsymbol{b} \in \mathbb{R}_{+}^{n}$ with $p(\boldsymbol{b})>0$.
(4) Q is negative semidefinite on some $(n-1)$-dimensional subspace.
(5) Q is Lorentz.

Recall: $\nabla^{2} \log p(\boldsymbol{a}) \cong\left(\mathbf{a}^{\top} Q \mathbf{a}\right) \cdot Q-\frac{d}{d-1} \cdot(Q \boldsymbol{a})(Q \boldsymbol{a})^{\top}$ and $\mathbf{a}^{\top} Q \boldsymbol{a}>0$.
$(2) \Longrightarrow(3)$: Note that both conditions only depend on the matrix Q. Consider the polynomial $q(\boldsymbol{x}):=\frac{1}{2} \boldsymbol{x}^{\top} Q \boldsymbol{x}$, which is such that

$$
\nabla^{2} q(\boldsymbol{a})=Q=\nabla^{2} q(\boldsymbol{b}) \quad \text { for all } \boldsymbol{b}
$$

So applying the equivalence (2) $\Longleftrightarrow(4)$ to q and $Q^{\prime}:=\nabla^{2} q(\boldsymbol{b})$ says that Q^{\prime} is negative semidefinite on $\left(Q^{\prime} \mathbf{b}\right)^{\perp}$ since $Q^{\prime}=Q$ is negative semidefinite on the $(n-1)$-dimensional subspace $(Q a)^{\perp}$.

Properties of CLC polynomials, revisited

Proposition

If $p, q \in \mathbb{R}_{+}[\boldsymbol{x}]$ are CLC polynomials, then
(1) $\nabla_{a} p$ for $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$ and $\left.p\right|_{x_{i}=0}$ are CLC.
(2) The Hessian $\nabla^{2} p(\boldsymbol{a})$ is Lorentz for all $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$.
(3) $p(A \boldsymbol{x})$ is CLC for all $n \times m$ matrices A with non-negative entries.
(9) $p(\boldsymbol{a} \cdot t+\boldsymbol{b} \cdot s) \in \mathbb{R}_{+}[t, s]$ is CLC for all $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}_{+}^{n}$.
(5) $p(x) \cdot q(z) \in \mathbb{R}_{+}[x, z]$ is CLC.
(6) $p(\boldsymbol{x}) \cdot q(\boldsymbol{x}) \in \mathbb{R}_{+}[\boldsymbol{x}]$ is CLC.

Bonus: A quadratic homogeneous polynomial $p(\boldsymbol{x})=\boldsymbol{x}^{\top} A \boldsymbol{x}$ is CLC if and only if A is Lorentz.

Next: $p(A \mathbf{x})$ and products.

Precomposition by positive linear action preserves CLC

Fact: If $p \in \mathbb{R}_{+}\left[x_{1}, \ldots, x_{n}\right]$ is CLC and A is an $n \times m$ matrix with non-negative entries, then $p(A \boldsymbol{x}) \in \mathbb{R}_{+}\left[x_{1}, \ldots, x_{m}\right]$ is CLC.

Proof: For any $\boldsymbol{v} \in \mathbb{R}_{+}^{m}$, we have

$$
\begin{aligned}
\nabla_{v}[p(A \boldsymbol{x})] & =\sum_{j=1}^{m} v_{j} \partial_{x_{j}}\left[p\left(\sum_{k=1}^{m} a_{1 k} x_{k}, \ldots, \sum_{k=1}^{m} a_{n k} x_{k}\right)\right] \\
& =\sum_{j=1}^{m} v_{j}\left[\left(\sum_{i=1}^{n} a_{i j} \partial_{x_{i}}\right) p\right](A \boldsymbol{x})=\left[\left(\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i j} v_{j} \partial_{x_{i}}\right) p\right](A \boldsymbol{x}) .
\end{aligned}
$$

To complete the proof, need to show that $p(A \boldsymbol{x})$ is log-concave in the positive orthant whenever p is:

$$
\begin{aligned}
\log p(A[t \cdot \boldsymbol{x}+(1-t) \cdot \boldsymbol{y}]) & =\log p(t \cdot(A \boldsymbol{x})+(1-t) \cdot(A \boldsymbol{y})) \\
& \geq t \cdot \log p(A \boldsymbol{x})+(1-t) \cdot \log p(A \boldsymbol{y})
\end{aligned}
$$

Products of CLC polynomials are CLC

Lemma (sum-of-CLCs): If $p, q \in \mathbb{R}_{+}[\boldsymbol{x}]$ are d-homog. CLC polynomials such that $\nabla_{\boldsymbol{b}} p=\nabla_{\boldsymbol{c}} q \not \equiv 0$ for some $\boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}_{+}^{n}$, then $p+q$ is CLC.

Corollary: If $p(\boldsymbol{x})$ and $q(\boldsymbol{z})$ are CLC, then so is $p(\boldsymbol{x}) \cdot q(\boldsymbol{z})$.
Proof: Log-concavity is straightforward, since the log of a product is the sum of logs. By induction, for any $\boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}_{+}^{n}$

$$
\nabla_{(\boldsymbol{b}, \boldsymbol{c})}[p(\boldsymbol{x}) \cdot q(\boldsymbol{z})]=\nabla_{\boldsymbol{b}} p(\boldsymbol{x}) \cdot q(\boldsymbol{z})+p(\boldsymbol{x}) \cdot \nabla_{\boldsymbol{c}} q(\boldsymbol{z})
$$

is a sum of CLC polynomials. Further,

$$
\nabla_{(0, \boldsymbol{c})}\left[\nabla_{\boldsymbol{b}} p(\boldsymbol{x}) \cdot q(\mathbf{z})\right]=\nabla_{\boldsymbol{b}} p(\boldsymbol{x}) \cdot \nabla_{\boldsymbol{c}} q(\mathbf{z})=\nabla_{(\boldsymbol{b}, \mathbf{0})}\left[p(\boldsymbol{x}) \cdot \nabla_{\boldsymbol{c}} q(\mathbf{z})\right] .
$$

Therefore the sum-of-CLCs lemma applies if $\nabla_{\boldsymbol{b}} p(\boldsymbol{x}) \cdot \nabla_{\boldsymbol{c}} q(\boldsymbol{z}) \not \equiv 0$. If $\nabla_{\boldsymbol{b}} p(\boldsymbol{x}) \cdot \nabla_{\boldsymbol{c}} q(\boldsymbol{z}) \equiv 0$, then one of the polynomials in the above sum is 0 .

Proof of the sum-of-CLCs lemma

Lemma (sum-of-CLCs): If $p, q \in \mathbb{R}_{+}[\boldsymbol{x}]$ are d-homog. CLC polynomials such that $\nabla_{\boldsymbol{b}} p=\nabla_{\boldsymbol{c}} q \not \equiv 0$ for some $\boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}_{+}^{n}$, then $p+q$ is CLC.

Proof of Lemma: By induction on degree, for all $\boldsymbol{a} \in \mathbb{R}_{>0}^{n}$ we have

$$
\nabla_{\boldsymbol{b}}\left(\nabla_{\boldsymbol{a}} p\right)=\nabla_{\boldsymbol{c}}\left(\nabla_{\boldsymbol{a}} q\right) \quad \Longrightarrow \quad \nabla_{\boldsymbol{a}}(p+q) \quad \text { is CLC. }
$$

So we just need to show that $p+q$ is log-concave in the positive orthant. For any $\boldsymbol{a} \in \mathbb{R}_{>0}^{n}$, define $Q_{1}:=\nabla^{2} p(\boldsymbol{a})$ and $Q_{2}:=\nabla^{2} q(\boldsymbol{a})$ to get

$$
\left(Q_{1} \boldsymbol{b}\right)_{j}=\sum_{i} b_{i} \partial_{x_{i}} \partial_{x_{j}} p(\boldsymbol{a})=\partial_{x_{j}} \nabla_{\boldsymbol{b}} p(\boldsymbol{a})=\partial_{x_{j}} \nabla_{\boldsymbol{c}} q(\boldsymbol{a})=\left(Q_{2} \boldsymbol{c}\right)_{j} .
$$

That is $Q_{1} \boldsymbol{b}=Q_{2} \boldsymbol{c} \neq \mathbf{0}$. Log-concavity of p, q then implies Q_{1} and Q_{2} are both NSD on $\left(Q_{1} \boldsymbol{b}\right)^{\perp}=\left(Q_{2} \boldsymbol{c}\right)^{\perp}$ by the Lorentz equivalence.

Therefore $Q_{1}+Q_{2}=\nabla^{2}[p+q](a)$ is NSD on this $(n-1)$-dimensional subspace, which implies $\nabla^{2} \log [p+q](a)$ is NSD by Lorentz equivalence.

Properties of CLC polynomials, revisited

Proposition

If $p, q \in \mathbb{R}_{+}[\boldsymbol{x}]$ are CLC polynomials, then
(1) $\nabla_{a} p$ for $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$ and $\left.p\right|_{x_{i}=0}$ are CLC.
(2) The Hessian $\nabla^{2} p(\boldsymbol{a})$ is Lorentz for all $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$.
(3) $p(A \boldsymbol{x})$ is CLC for all $n \times m$ matrices A with non-negative entries.
(9) $p(\boldsymbol{a} \cdot t+\boldsymbol{b} \cdot s) \in \mathbb{R}_{+}[t, s]$ is CLC for all $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}_{+}^{n}$.
(6) $p(x) \cdot q(z) \in \mathbb{R}_{+}[\boldsymbol{x}, \boldsymbol{z}]$ is CLC.
(0) $p(\boldsymbol{x}) \cdot q(\boldsymbol{x}) \in \mathbb{R}_{+}[\boldsymbol{x}]$ is CLC.

Lemma (sum-of-CLCs)

If $p, q \in \mathbb{R}_{+}[\boldsymbol{x}]$ are d-homogeneous CLC polynomials such that $\nabla_{\boldsymbol{b}} p=\nabla_{\boldsymbol{c}} q \not \equiv 0$ for some $\boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}_{+}^{n}$, then $p+q$ is $C L C$.

Two main corollaries: Reduction to quadratics and symbol theorem.

Outline

(1) Completely log-concave (Lorentzian) polynomials

- Motivation
- Definition
(2) Properties of completely log-concave polynomials
- Log-concavity and Lorentz signature
- Products of CLC polynomials
(3) Reduction to quadratics
- Proof of the reduction
- Corollaries of the reduction

4 Symbol theorem for CLC polynomials

Reduction to quadratics

Theorem (Anari-Oveis Gharan-Vinzant '19; see also Brändén-Huh '19)

A d-homogeneous polynomial $p \in \mathbb{R}_{+}[\boldsymbol{x}]$ is CLC iff:
(1) For all $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$ with $|\boldsymbol{\mu}| \leq d-2, \partial_{x}^{\mu} p$ is indecomposable.
(2) For all $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$ with $|\boldsymbol{\mu}|=d-2$, $\partial_{x}^{\mu} p$ is log-concave in \mathbb{R}_{+}^{n}.

Indecomposable polynomial: p cannot be written as $p=f+g$ where $f, g \not \equiv 0$ depend on disjoint variables.
Easy direction (\Longrightarrow) : If $\partial_{x}^{\mu} p$ is decomposable and of degree d^{\prime}, then

$$
\nabla_{1}^{d^{\prime}-2}\left(\partial_{x}^{\mu} p\right)=\nabla_{1}^{d^{\prime}-2}(f+g)=\nabla_{1}^{d^{\prime}-2} f+\nabla_{1}^{d^{\prime}-2} g
$$

is a decomposable quadratic form. Therefore $p(\boldsymbol{x})=\boldsymbol{x}^{\top}\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right] \boldsymbol{x}$, where A, B are Lorentz matrices since f and g are CLC (plug in 0).

Contradiction: Hessian of p has two positive eigenvalues.

Proof of reduction to quadratics, harder direction

Simplify: Assume that $p_{\mu}>0$ for all $|\boldsymbol{\mu}|=d . \Longrightarrow$ Stronger than indecomposable. (One can limit the positive coefficients case to the general indecomposable case, but this is not obvious [Brändén-Huh '19].)

Lemma: If $\partial_{x_{i}} p$ is CLC for all i, then $\nabla_{a} p$ is CLC for all $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$. Proof: First assume $\boldsymbol{a}>\mathbf{0}$, and let $D_{k}:=\sum_{i=1}^{k} a_{i} \partial_{x_{i}}$. Assume by induction that $D_{k} p$ is CLC. By the sum-of-CLCs lemms, we have that

$$
\begin{aligned}
a_{k+1} \partial_{x_{k+1}}\left(D_{k} p\right) & =D_{k}\left(a_{k+1} \partial_{x_{k+1}} p\right) \\
& \Longrightarrow D_{k+1} p=\left(D_{k}+a_{k+1} \partial_{x_{k+1}}\right) p \text { is CLC. }
\end{aligned}
$$

Note that sum-of-CLCs applies because $\partial_{x_{k+1}}\left(D_{k} p\right) \not \equiv 0$, since $p_{\mu}>0$. For $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$ we simply skip the entries of \boldsymbol{a} which are 0 .

Including indecomposability: Need to order the variables in such a way so that $\partial_{x_{k+1}}\left(D_{k} p\right) \not \equiv 0$. (Exercise.)

Proof of reduction to quadratics, harder direction

Theorem (Anari-Oveis Gharan-Vinzant '19; see also Brändén-Huh '19)

A d-homogeneous polynomial $p \in \mathbb{R}_{+}[\boldsymbol{x}]$ is CLC iff:
(1) For all $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$ with $|\boldsymbol{\mu}| \leq d-2, \partial_{x}^{\mu} p$ is indecomposable.
(2) For all $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$ with $|\boldsymbol{\mu}|=d-2$, $\partial_{x}^{\mu} p$ is log-concave in \mathbb{R}_{+}^{n}.

Assume: $p_{\mu}>0$ for all $|\boldsymbol{\mu}|=d$. Lemma: If $\partial_{x_{i}} p$ is CLC for all i, then $\nabla_{\boldsymbol{a}} p$ is CLC for all $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$.

Other direction (\Longleftarrow) : It suffices to show that p is log-concave in \mathbb{R}_{+}^{n} and that $\nabla_{a} p$ is CLC for all $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$. By induction on degree, $\partial_{x_{i}} p$ is CLC for all i. Thus the lemma applies, and $\nabla_{\boldsymbol{a}} p$ is CLC for all $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$.
The log-concavity of p then follows from the fact that p is log-concave at \boldsymbol{a} iff $\nabla_{\boldsymbol{a}} p$ is log-concave at \boldsymbol{a}. Why? Lorentz equiv. and Euler's identity:

$$
\nabla^{2}\left[\nabla_{\boldsymbol{a}} p\right](\boldsymbol{a})=\left[\sum_{i} a_{i} \partial_{x_{j}} \partial_{x_{k}} \partial_{x_{i}} p(\boldsymbol{a})\right]_{j, k=1}^{n}=\left[\partial_{x_{j}} \partial_{x_{k}} p(\boldsymbol{a})\right]_{j, k=1}^{n}=\nabla^{2} p(\boldsymbol{a}) .
$$

Corollaries of the reduction to quadratics: real stability

Fact: If the quadratic form $p(\boldsymbol{x}):=\boldsymbol{x}^{\top} A \boldsymbol{x} \in \mathbb{R}_{+}^{n}[\boldsymbol{x}]$ is real stable, then A is Lorentz. (Note that A is the constant Hessian of p in this case.)
Corollary: Homogeneous real stable polynomials are CLC.
Proof for quadratics: By Perron-Frobenius, A has an eigenvalue $\lambda_{1}>0$ with corresponding eigenvector \boldsymbol{a} which has non-negative entries. Suppose A has a second positive eigenvalue λ_{2} with corresponding eigenvector \boldsymbol{b}.

Contradiction: This implies the linear restriction $p(\boldsymbol{a} \cdot t+\boldsymbol{b})$ has no zeros.
Note: Perron-Frobenius usually requires strictly positive entries. However, indecomposability implies Perron-Frobenius can be used. This is one possible intuition for indecomposability.

Note: The converse is also true: A quadratic is real stable if and only if the associated matrix is Lorentz. Actually, many equivalences at the level of quadratics. Proof: Exercise.

Corollaries of the quadratic reduction: ULC

Fact: Homogeneous $p \in \mathbb{R}_{+}\left[x_{1}, x_{2}\right]$ is CLC iff its coefficients are ULC.
Proof: Follows directly from the reduction to quadratics:
(1) Indecomposable: Equivalent to having no internal zeros in coefficient sequence. (Take derivatives until $a x_{1}^{k}+b x_{2}^{j}$ with $|k-j| \geq 2$ and $a, b \neq 0$.)
(2) Quadratic derivatives: Each derivative of degree $d-2$ picks out a sequence of 3 coefficients in p. We just need to show that these quadratics have non-negative discriminant to prove ULC. A bivariate quadratic form looks like:

$$
\boldsymbol{x}^{\top}\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \boldsymbol{x}=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}
$$

This matrix is Lorentz iff det ≤ 0 iff $a c \leq b^{2}$ iff $(2 b)^{2}-4 a c \geq 0$.

Outline

(1) Completely log-concave (Lorentzian) polynomials

- Motivation
- Definition
(2) Properties of completely log-concave polynomials
- Log-concavity and Lorentz signature
- Products of CLC polynomials
(3) Reduction to quadratics
- Proof of the reduction
- Corollaries of the reduction

4 Symbol theorem for CLC polynomials

Symbol theorem for multiaffine CLC polynomials

Definition: The symbol of a linear operator $T: \mathbb{R}_{+}^{1}[\boldsymbol{x}] \rightarrow \mathbb{R}_{+}[\boldsymbol{x}]$:

$$
\text { Symb }^{\lambda}[T](x, z):=T\left[\prod_{i=1}^{n}\left(x_{i}+z_{i}\right)\right]=\sum_{\mu \leq 1} z^{1-\mu} T\left[x^{\mu}\right]
$$

Here T acts only on \boldsymbol{x} and $\boldsymbol{\mu} \leq \mathbf{1}$ is entrywise.

Theorem (Anari-Liu-Oveis Gharan-Vinzant '19, Brändén-Huh '19)

For a given linear operator $T: \mathbb{R}_{+}^{1}[\mathbf{x}] \rightarrow \mathbb{R}_{+}[\mathbf{x}]$, we have that T preserves CLC (allowing $\equiv 0$) if $\operatorname{Symb}^{\mathbf{1}}[T](\boldsymbol{x}, \boldsymbol{z})$ is CLC.

Proof: $T[p](\boldsymbol{x})=\left.\prod_{i=1}^{n}\left(\partial_{z_{i}}+\partial_{t_{i}}\right)\right|_{z_{i}=t_{i}=0}\left[\operatorname{Symb}^{1}[T](\boldsymbol{x}, \boldsymbol{z}) \cdot p(\boldsymbol{t})\right]$.
Corollary: Homogeneous real stability preservers preserve CLC.
Fact: Polarization also preserves CLC. \Longrightarrow More general symbol theorem follows from the same polarization techniques as in the real stable case.

