Completely Log-concave (Lorentzian) Polynomials Exercises

Jonathan Leake

November 13, 2020

Definition. A matrix Q is said to be **Lorentz** if it is a Hermitian matrix in the close of the set of all matrices with Lorentz signature (+, -, -, ..., -).

Definition. A polynomial $p \in \mathbb{R}_+[x]$ is said to be **indecomposable** if there is no way to write p = f + g where $f, g \neq 0$ depend on disjoint sets of variables.

Definition. A *d*-homogeneous polynomial $p \in \mathbb{R}_+[x]$ is said to be **completely log-concave** if for all $k \in \mathbb{Z}_+$ and all choices of $v_1, \ldots, v_k \in \mathbb{R}^n_+$, we have that

$$abla_{\boldsymbol{v}_1} \cdots
abla_{\boldsymbol{v}_k} p = \left(\prod_{i=1}^k \sum_{j=1}^n v_{ij}\right) p$$

is log-concave in the positive orthant. We also consider the zero polynomial to be completely log-concave.

Exercises

- 1. Complete the proof of the fact that a *d*-homogeneous polynomial $p \in \mathbb{R}_+[x]$ is completely log-concave if and only if the following hold:
 - (a) For all $\mu \in \mathbb{Z}^n_+$ with $|\mu| \leq d-2$, we have that $\partial^{\mu}_{x} p$ is indecomposable.
 - (b) For all $\boldsymbol{\mu} \in \mathbb{Z}^n_+$ with $|\boldsymbol{\mu}| = d 2$, we have $\partial_{\boldsymbol{x}}^{\boldsymbol{\mu}} p = \boldsymbol{x}^\top Q \boldsymbol{x}$ is such that Q is Lorentz.

Recall that we proved this in the case that $p_{\mu} > 0$ for all $|\mu| = d$, and so all that's left to be done is the (\Leftarrow) direction under the assumption of indecomposability. (Hint: Need to order the variables in a special way.)

- 2. Prove that if $\mathbf{x}^{\top}Q\mathbf{x}$ is indecomposable, then the Perron-Frobenius theorem holds for Q.
- 3. Let $p(\mathbf{x}) = \mathbf{x}^{\top} Q \mathbf{x}$ where Q is a real symmetric matrix with non-negative entries. Prove that the following are equivalent.
 - (a) Q is Lorentz.
 - (b) p is real stable.
 - (c) $\boldsymbol{v}^\top Q \boldsymbol{w} \ge \sqrt{\boldsymbol{v}^\top Q \boldsymbol{v} \cdot \boldsymbol{w}^\top Q \boldsymbol{w}}$ for all $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^n_+$.
 - (d) \sqrt{p} is concave in \mathbb{R}^n_+ .
 - (e) p is log-concave in \mathbb{R}^n_+ .
 - (f) The Hessian of log p is negative semidefinite at all points in $\mathbb{R}^n_{\geq 0}$.
 - (g) The Hessian of log p is negative semidefinite at some point in $\mathbb{R}^n_{>0}$.
- 4. Given a *d*-homogeneous polynomial $p \in \mathbb{R}_+[\mathbf{x}]$, prove that the following are equivalent:

- (a) **Completely log-concave:** *p* is completely log-concave.
- (b) Coordinate derivatives: For all $k \in \mathbb{Z}_+$ and all choices of $i_1, \ldots, i_k \in [n]$, we have that $\partial_{x_{i_1}} \cdots \partial_{x_{i_k}} p$ is log-concave in \mathbb{R}^n_+ .
- (c) Coordinate quadratics plus one: For all choices of $D_1, \ldots, D_{d-2} \in \{\partial_{x_1}, \ldots, \partial_{x_n}, \nabla_1\}$, we have that $D_1 D_2 \cdots D_{d-2} p$ is log-concave in \mathbb{R}^n_+ .
- (d) **Positive orthant quadratics:** For all choices of $v_1, v_2, \ldots, v_{d-2} \in \mathbb{R}^n_+$, we have that $\nabla_{v_1} \nabla_{v_2} \cdots \nabla_{v_{d-2}} p$ is log-concave in \mathbb{R}^n_+ .
- (e) Alexandrov-Fenchel inequalities: For all $v_1, \ldots, v_d \in \mathbb{R}^n_+$, we have that

$$\nabla_{\boldsymbol{v}_1} \nabla_{\boldsymbol{v}_2} \nabla_{\boldsymbol{v}_3} \cdots \nabla_{\boldsymbol{v}_d} p \ge \sqrt{(\nabla_{\boldsymbol{v}_1} \nabla_{\boldsymbol{v}_1} \nabla_{\boldsymbol{v}_3} \cdots \nabla_{\boldsymbol{v}_d} p) \cdot (\nabla_{\boldsymbol{v}_2} \nabla_{\boldsymbol{v}_2} \nabla_{\boldsymbol{v}_3} \cdots \nabla_{\boldsymbol{v}_d} p)}.$$

- 5. Prove that all homogeneous real stable polynomials in $\mathbb{R}_+[x]$ are completely log-concave.
- 6. Given a real symmetric $n \times n$ matrix Q with non-negative entries, prove that Q is Lorentz if and only if

$$(-1)^{|I|} \det(Q_{I,I}) \le 0$$

for all $I \subseteq [n]$, where det $(Q_{I,I})$ denotes the principal minor corresponding to the rows and columns indexed by I.

- 7. Construct an algorithm for checking if p is completely log-concave, assuming you know the coefficients of p exactly. Is there an algorithm for checking if p is real stable? (Hint: For the real stable question, consider the strong Rayleigh inequalities.)
- 8. State and prove a version of exercise (3) in the case that Q is positive semidefinite. Is there an interesting polynomial theory that comes out of this observation? (This is more or less a "conceptual open problem", and you should let me know if you have thoughts on possible applications.)
- 9. **Open problem:** Is there a similar polynomial theory to that of completely log-concave (Lorentzian) polynomials which allows for "close-to-Lorentz" matrices? (Here "close-to-Lorentz" should mean that the second largest eigenvalue is allowed to be positive, but small.)
- 10. Analogue to the strong Rayleigh inequalities: Let $p \in \mathbb{R}_+[x]$ be a multiaffine *d*-homogeneous completely log-concave polynomial. Show that for all $i, j \in [n]$ and all $x \in \mathbb{R}^n_+$, we have that

$$\partial_{x_i} p(\boldsymbol{x}) \cdot \partial_{x_j} p(\boldsymbol{x}) - 2\left(1 - \frac{1}{d}\right) \cdot p(\boldsymbol{x}) \cdot \partial_{x_i} \partial_{x_j} p(\boldsymbol{x}) \ge 0$$

- 11. Let $p \in \mathbb{R}_+[x]$ be a multiaffine *d*-homogeneous polynomial. Prove that p is completely log-concave if and only if p is log-concave in the positive orthant. (**Hint:** What is $\lim_{t\to+\infty} \frac{1}{t} \cdot p(t, x_2, \ldots, x_n)$ equal to?)
- 12. Let $p \in \mathbb{R}_{+}[\boldsymbol{x}]$ be a polynomial of total degree at most d which satisfies the definition of completely log-concave polynomial, except that it is not homogeneous. Prove that the d-homogenization of p is not necessarily completely log-concave. On the other hand, show that the homogenization of any real stable polynomial $p \in \mathbb{R}_{+}[\boldsymbol{x}]$ is also real stable. (**Hint:** For the real stable part, the non-negativity of the coefficients is necessary, and therefore one cannot hope to use the Borcea-Brändén characterization here.)
- 13. Let $p \in \mathbb{R}_+[x]$ be a polynomial of total degree at most d which satisfies the definition of completely log-concave polynomial, except that it is not homogeneous. Write the d-homogenization of p as

$$\operatorname{Hmg}(p) = \sum_{i=0}^{d} x^{i} p_{i}(\boldsymbol{x}),$$

where p_i is homogeneous of degree d - i. Prove that

$$P(\boldsymbol{x}) := \sum_{i=0}^{d} \frac{x^{i}}{i!} p_{i}(\boldsymbol{x})$$

is a homogeneous completely log-concave polynomial. Prove that this property actually characterizes "non-homogenous completely log-concave" polynomials.

- 14. Prove that the polarization operator used for real stable polynomials preserves complete log-concavity. (Hint: How does the derivative ∂_{x_i} commute with polarization?)
- 15. Symbol theorem: Given a linear operator $T: \mathbb{R}^{\lambda}_{+}[x] \to \mathbb{R}_{+}[x]$, define the symbol of T via

Symb^{$$\lambda$$}[T]($\boldsymbol{x}, \boldsymbol{z}$) := T $\left[\prod_{i=1}^{n} (x_i + z_i)^{\lambda_i}\right] = \sum_{\boldsymbol{\mu} \leq \boldsymbol{\lambda}} {\binom{\boldsymbol{\lambda}}{\boldsymbol{\mu}}} \boldsymbol{z}^{\boldsymbol{\lambda} - \boldsymbol{\mu}} T[\boldsymbol{x}^{\boldsymbol{\mu}}],$

where $\binom{\lambda}{\mu}$ is the product of binomial coefficients. Prove that if Symb^{λ}[T] is completely log-concave, then T preserves the space of completely log-concave polynomials. (**Hint:** Use the polarization.)

16. Given a *d*-homogeneous $p \in \mathbb{R}_+[x]$, define the following **normalization** operator:

$$N[p] := \sum_{\boldsymbol{\mu}} \binom{d}{\boldsymbol{\mu}} p_{\boldsymbol{\mu}},$$

where $\binom{d}{\mu}$ is the multinomial coefficient. We say that p is **denormalized Lorentzian** whenever N[p] is Lorentzian. Prove that the product of two denormalized Lorentzian polynomials is denormalized Lorentzian. (**Hint:** Use the symbol theorem of the previous exercise. Note that this somewhat requires the equivalent definition of **Lorentzian** polynomials, due to Brändén-Huh, which replaces indecomposability with matroidal/M-convex support. If you are not familiar with this, don't worry: we'll talk about it next week.)