Applications of CLC/Lorentzian Polynomials

 Polynomial Capacity: Theory, Applications, GeneralizationsJonathan Leake

Technische Universität Berlin

November 26th, 2020

Notation

Polynomial notation:

- $\mathbb{R}, \mathbb{R}_{+}, \mathbb{C}, \mathbb{Z}_{+}:=$reals, non-negative reals, complex numbers, non-negative integers.
- $\boldsymbol{x}^{\mu}:=\prod_{i} x_{i}^{\mu_{i}}$ and $\boldsymbol{\mu} \leq \boldsymbol{\lambda}$ is entrywise.
- $\mathbb{R}[\boldsymbol{x}]:=$ v.s. of real polynomials in n variables.
- $\mathbb{R}_{+}[\boldsymbol{x}]:=$ v.s. of real polynomials with non-negative coefficients.
- $\mathbb{R}^{\lambda}[\boldsymbol{x}]:=\mathrm{v}$.s. of polynomials of degree at most λ_{i} in x_{i}.
- For $p \in \mathbb{R}[\boldsymbol{x}]$, we write $p(\boldsymbol{x})=\sum_{\mu} p_{\mu} \boldsymbol{x}^{\mu}$.
- For d-homogeneous $p \in \mathbb{R}[\boldsymbol{x}]$, we write $p(\boldsymbol{x})=\sum_{|\mu|=d} p_{\mu} \boldsymbol{x}^{\mu}$.
- The support of p is the set of $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$ for which $p_{\mu} \neq 0$.
- $\frac{d}{d x}=\frac{\partial}{\partial x}=\partial_{x}:=$ derivative with respect to x, and $\partial_{\boldsymbol{x}}^{\mu}:=\prod_{i} \partial_{x_{i}}^{\mu_{i}}$.
- $p(\boldsymbol{a} \cdot t+\boldsymbol{b})=p\left(a_{1} t+b_{1}, \ldots, a_{n} t+b_{n}\right) \in \mathbb{R}^{\lambda_{1}+\cdots+\lambda_{n}}[t]$ is a linear restriction of the polynomial $p \in \mathbb{R}^{\boldsymbol{\lambda}}[\boldsymbol{x}]$, where $\boldsymbol{a} \in \mathbb{R}_{+}^{n}$ and $\boldsymbol{b} \in \mathbb{R}^{n}$.

Outline

(1) Connection to matroids

- Properties and examples of matroids
- Basis exchange graph
- Basis generating polynomials are CLC
- Lorentzian polynomials
(2) Mason's strongest conjecture
- The independent set polynomial
- Independent set polynomials are CLC
(3) Sampling bases of a matroid
- Sampling via random walks
- Mixing time via λ_{2} (second largest eigenvalue)
- Local-to-global theorem for λ_{2}
- Basis sampling overview
(4) Foreshadowing: Counting bases in the intersection of two matroids

Outline

(1) Connection to matroids

- Properties and examples of matroids
- Basis exchange graph
- Basis generating polynomials are CLC
- Lorentzian polynomials
(2) Mason's strongest conjecture
- The independent set polynomial
- Independent set polynomials are CLC
(3) Sampling bases of a matroid
- Sampling via random walks
- Mixing time via λ_{2} (second largest eigenvalue)
- Local-to-global theorem for λ_{2}
- Basis sampling overview
(4) Foreshadowing: Counting bases in the intersection of two matroids

Matroids

Matroid: $M=(E, \mathcal{I})$ where E is the ground set and $\mathcal{I} \subseteq 2^{E}$ are the independent subsets, which satisfy:
(1) Nonempty: $\mathcal{I} \neq \varnothing$.
(2) Hereditary: $B \in \mathcal{I}$ and $A \subseteq B$ implies $A \in \mathcal{I}$.
(3) Exchange/Augmentation: For all $A, B \in \mathcal{I}$ such that $|A|<|B|$, there exists $e \in B \backslash A$ such that $A \cup\{e\} \in \mathcal{I}$.
E.g.: A set of vectors in a vector space, with \mathcal{I} given by linearly independent subsets (linear matroid). The set of edges of a graph, with \mathcal{I} given by subsets with no cycles (graphic matroid). Many more...

Maximal $B \in \mathcal{I}$ are the bases, $\mathcal{B} \subset \mathcal{I}$, of M. Another definition of M :
(3) Exchange: For any bases $B_{1}, B_{2} \in \mathcal{B}$ and any $e_{1} \in B_{1} \backslash B_{2}$, there exists $e_{2} \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash\left\{e_{1}\right\}\right) \cup\left\{e_{2}\right\} \in \mathcal{B}$.
The spanning tree polynomial is a basis-generating polynomial. Others?

Examples of matroids

Linear matroid example: $E=\{(1,0,0),(1,1,0),(0,1,0),(1,1,1)\} \subset \mathbb{R}^{3}$, with \mathcal{I} given by linearly independent subsets.

Then \mathcal{I} consists of the empty set, all one-element subsets, all two-elements subsets, and all three-element subsets containing ($1,1,1$).

The bases of $M=(E, \mathcal{I})$ are the three-element sets in \mathcal{I}; they are precisely the linear bases of \mathbb{R}^{3}. The rank of M is therefore 3 .

Uniform matroid example: Let E be any set, and let \mathcal{I} be the set of all subsets of size at most d (for any d).

The bases of M are the d-element sets in \mathcal{I}, and the rank of M is d.
The basis generating polynomial is the elementary symmetric polynomial, which is real stable. However, not all basis generating polynomials are real stable.

Basis exchange for linear/graphic matroids

Matroid: $M=(E, \mathcal{B})$ where E is the ground set and $\mathcal{B} \subset 2^{E}$ are the bases of M. They are all of the same size, satisfying:

- Basis exchange: For any bases $B_{1}, B_{2} \in \mathcal{B}$ and any $e_{1} \in B_{1} \backslash B_{2}$, there exists $e_{2} \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash\left\{e_{1}\right\}\right) \cup\left\{e_{2}\right\} \in \mathcal{B}$.

Linear matroids: Let B_{1}, B_{2} be two different bases of \mathbb{C}^{n}, and fix some $e_{1} \in B_{1} \backslash B_{2}$. Then $B_{1} \backslash\left\{e_{1}\right\}$ spans V. Since B_{2} is a basis, there is some $e_{2} \in B_{2} \backslash V$. With this, $\left(B_{1} \backslash\left\{e_{1}\right\}\right) \cup\left\{e_{2}\right\}$ is another basis of \mathbb{C}^{n}.

Graphic matroids: Spanning trees of a connected graph.

Basis exchange for graphic matroids

Basis exchange: For any bases $B_{1}, B_{2} \in \mathcal{B}$ and any $e_{1} \in B_{1} \backslash B_{2}$, there exists $e_{2} \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash\left\{e_{1}\right\}\right) \cup\left\{e_{2}\right\} \in \mathcal{B}$.

Graphic matroids: Let B_{1}, B_{2} be two different spanning trees of a connected graph G, and fix some $e_{1} \in B_{1} \backslash B_{2}$.

(1) Remove e_{1} from B_{1} to partition the vertices $V=U \sqcup W$ based on which vertices are connected by edges in $B_{1} \backslash\left\{e_{1}\right\}$ (pictured).
(2) Pick an edge $e_{2} \in B_{2}$ which connects U and W, and add it B_{1}.
(3) The set $\left(B_{1} \backslash\left\{e_{1}\right\}\right) \cup\left\{e_{2}\right\}$ must be a spanning tree, since it has no cycles and connects all vertices.

Basis exchange graph

Given any matroid, $M=(E, \mathcal{B})$, construct a graph with the bases as vertices. Let two bases be connected by an edge if there is an exchange to go from one to the other. (That is, if $\left|B_{1} \backslash B_{2}\right|=1 \Longleftrightarrow\left|B_{1} \Delta B_{2}\right|=2$.)
Fact: The basis exchange graph of any matroid is connected.
Example: $E=\{(1,0,0),(1,1,0),(0,1,0),(1,1,1)\}=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$.

Uniform matroid: Regular, highly symmetric graph.

Basis exchange graph

Given any matroid, $M=(E, \mathcal{B})$, construct a graph with the bases as vertices. Let two bases be connected by an edge if there is an exchange to go from one to the other. (That is, if $\left|B_{1} \backslash B_{2}\right|=1 \Longleftrightarrow\left|B_{1} \Delta B_{2}\right|=2$.)

Fact: The basis exchange graph of any matroid is connected.
Proof: For $B_{0}, B^{\prime} \in \mathcal{B}$, pick any $e_{1} \in B_{0} \backslash B^{\prime}$ and move along an edge to $B_{1}:=\left(B_{0} \backslash\left\{e_{1}\right\}\right) \cup\left\{e_{2}\right\}$ for some $e_{2} \in B^{\prime} \backslash B_{0}$. We are guaranteed that $\left|B_{1} \backslash B^{\prime}\right|<\left|B_{0} \backslash B^{\prime}\right|<\infty$ in this case. By continuing this process, we eventually have $\left|B_{k} \backslash B^{\prime}\right|=0$. Since $\left|B_{k}\right|=\left|B^{\prime}\right|$, we in fact have $B_{k}=B^{\prime}$.

Corollary: If $|B| \geq 2$ and every $e \in E$ is included in some basis, then there is no non-trivial partition $E:=F \sqcup G$ such that: for all $B \in \mathcal{B}$ either $B \subseteq F$ or $B \subseteq G$.
Proof: Suppose such a partition exists. By assumption, there are bases $B_{1} \subseteq F$ and $B_{2} \subseteq G$. Therefore, $\left|B_{1} \backslash B_{2}\right|=\left|B_{1}\right| \geq 2$. Since this is true of all such bases, there is no way to move from B_{1} to B_{2} via exchanges.

Completely log-concave (CLC) polynomials

Definition (Gurvits '09, Anari-Oveis Gharan-Vinzant '19)

A d-homogeneous polynomial $p \in \mathbb{R}_{+}[\boldsymbol{x}]$ is completely log-concave (CLC) if for any choice of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}_{+}^{n}$ for any k, we have that

$$
\nabla_{\boldsymbol{v}_{1}} \cdots \nabla_{\boldsymbol{v}_{k}} p:=\left(\sum_{i} v_{1 i} \partial_{x_{i}}\right) \cdots\left(\sum_{i} v_{k i} \partial_{x_{i}}\right) p
$$

is log-concave in the positive orthant or $\equiv 0$.

Theorem (Anari-Oveis Gharan-Vinzant '19; see also Brändén-Huh '19)

A d-homogeneous polynomial $p \in \mathbb{R}_{+}[\boldsymbol{x}]$ is CLC iff:
(1) For all $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$ with $|\boldsymbol{\mu}| \leq d-2, \partial_{x}^{\mu} p$ is indecomposable.
(2) For all $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$ with $|\boldsymbol{\mu}|=d-2, \partial_{\boldsymbol{x}}^{\mu} p=\boldsymbol{x}^{\top} Q \boldsymbol{x}$ with Q Lorentz.

Indecomposable polynomial: p cannot be written as $p=f+g$ where $f, g \not \equiv 0$ depend on disjoint variables. Condition on the support of p. Lorentz matrix: Signature $(+,-,-, \ldots,-)$, or in the closure.

Basis generating polynomials

Corollary: If $|B| \geq 2$ and every $e \in E$ is included in some basis, then there is no non-trivial partition $E:=F \sqcup G$ such that: for all $B \in \mathcal{B}$ either $B \subseteq F$ or $B \subseteq G$.

Basis generating polynomial: Given a matroid $M=(E, \mathcal{B})$, we define

$$
p_{M}(\boldsymbol{x}):=\sum_{B \in \mathcal{B}} \boldsymbol{x}^{B}=\sum_{B \in \mathcal{B}} \prod_{e \in B} x_{e} \quad \in \quad \mathbb{R}^{\mathbf{1}}[\boldsymbol{x}]=\mathbb{R}^{\mathbf{1}}\left[\left(x_{e}\right)_{e \in E}\right] .
$$

Indecomposable polynomial: p cannot be written as $p=f+g$ where $f, g \not \equiv 0$ depend on disjoint variables.

Corollary: Every basis generating polynomial is indecomposable.
More: $p_{M / e}(\boldsymbol{x})=\partial_{x_{e}} p_{M}(\boldsymbol{x})$, where M / e denotes matroid contraction, where one keeps all bases in \mathcal{B} that contain e (and then remove e from all).

This is another matroid, so $\partial_{x}^{\mu} p_{M}$ is indecomposable for all $|\boldsymbol{\mu}| \leq d-2$.

Basis generating polynomials

Basis generating polynomial: Given a matroid $M=(E, \mathcal{B})$, we define

$$
p_{M}(\boldsymbol{x}):=\sum_{B \in \mathcal{B}} \boldsymbol{x}^{B}=\sum_{B \in \mathcal{B}} \prod_{e \in B} x_{e} \quad \in \quad \mathbb{R}^{\mathbf{1}}[\boldsymbol{x}]=\mathbb{R}^{\mathbf{1}}\left[\left(x_{e}\right)_{e \in E}\right] .
$$

Last slide: $\partial_{x}^{\mu} p_{M}$ is indecomposable for all $|\boldsymbol{\mu}| \leq d-2$.
Now: For $|\boldsymbol{\mu}|=d-2$, we have $\partial_{x}^{\mu} p$ is the basis-generating polynomial of a rank-two matroid. Fact: The associated quadratic form is Lorentz.

Proof: Remove all $e \in E$ which are outside of all bases. The following is then an equivalence relation:

$$
e \sim f \text { for } e, f \in E \quad \Longleftrightarrow \quad\{e, f\} \notin \mathcal{B} .
$$

To see this, we just need to show transitivity. Suppose $e \sim f$ and $f \sim g$, but $\{e, g\} \in \mathcal{B}$. Pick $\{f, h\} \in \mathcal{B}$ and try to do basis exchange from $B_{1}=\{f, h\}$ to $B_{2}=\{e, g\}$ after removing $e_{1}=h$. This forces either $\{e, f\}$ or $\{f, g\}$ to be a basis in \mathcal{B}.

Basis generating polynomials

Fact: The quadratic form associated to a rank-two matroid is Lorentz.
Proof: Remove all $e \in E$ which are outside of all bases. The following is then an equivalence relation:

$$
e \sim f \text { for } e, f \in E \quad \Longleftrightarrow \quad\{e, f\} \notin \mathcal{B} .
$$

Let $E=S_{1} \sqcup S_{2} \sqcup \cdots \sqcup S_{m}$ be the equivalence classes of E. We can write the basis generating polynomial as

$$
2 \cdot p_{M}(\boldsymbol{x})=2 \cdot \sum_{B \in \mathcal{B}} \boldsymbol{x}^{B}=\boldsymbol{x}^{\top}\left(\mathbf{1}_{E} \mathbf{1}_{E}^{\top}-\sum_{i=1}^{m} \mathbf{1}_{S_{i}} \mathbf{1}_{S_{i}}^{\top}\right) \boldsymbol{x}=: \boldsymbol{x}^{\top} Q \boldsymbol{x}
$$

Subtracting a PSD matrix can only decrease eigenvalues, and Q is real symmetric with non-negative entries. Therefore Q is Lorentz.

Corollary: Every matroid basis generating polynomial is CLC.

Equivalent theory: Lorentzian polynomials

Every matroid basis generating polynomial is CLC. A sort of converse to this is also true; [Brändén-Huh '19] calls such polynomials Lorentzian.

Theorem (Anari-Oveis Gharan-Vinzant '19)

A d-homogeneous polynomial $p \in \mathbb{R}_{+}[\boldsymbol{x}]$ is CLC iff:
(1) For all $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$ with $|\boldsymbol{\mu}| \leq d-2, \partial_{x}^{\mu} p$ is indecomposable.
(2) For all $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$ with $|\boldsymbol{\mu}|=d-2, \partial_{\boldsymbol{x}}^{\mu} p=\boldsymbol{x}^{\top} Q \boldsymbol{x}$ with Q Lorentz.

Theorem (Brändén-Huh '19; definition of Lorentzian polynomial)

A d-homogeneous multiaffine polynomial $p \in \mathbb{R}_{+}[\boldsymbol{x}]$ is CLC iff:
(1) The support of p is the set of bases of a matroid.
(2) For all $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$ with $|\boldsymbol{\mu}|=d-2, \partial_{\boldsymbol{x}}^{\mu} p=\boldsymbol{x}^{\top} Q \boldsymbol{x}$ with Q Lorentz.

For non-multiaffine: Replace "the set of bases of a matroid" with "M-convex". \Longrightarrow Natural generalization of matroid to "higher degree".

Outline

(1) Connection to matroids

- Properties and examples of matroids
- Basis exchange graph
- Basis generating polynomials are CLC
- Lorentzian polynomials
(2) Mason's strongest conjecture
- The independent set polynomial
- Independent set polynomials are CLC
(3) Sampling bases of a matroid
- Sampling via random walks
- Mixing time via λ_{2} (second largest eigenvalue)
- Local-to-global theorem for λ_{2}
- Basis sampling overview
(4) Foreshadowing: Counting bases in the intersection of two matroids

Mason's strongest conjecture

Conjecture [Mason '75]: If $M=(E, \mathcal{I})$ is a matroid such that $|E|=n$, and I_{k} denotes the number of independent sets of M of size k, then $\left(I_{k}\right)_{k=0}^{n}$ forms an ultra log-concave sequence with respect to n.

Weaker Mason's conjecture: Log-concavity [Adiprasito-Huh-Katz '15].
Independent set generating polynomial for $M=(E, \mathcal{I})$ with $|E|=n$:

$$
q_{M}(x, y):=\sum_{l \in \mathcal{I}} x^{\prime} y^{n-|I|}=\sum_{l \in \mathcal{I}} y^{n-|l|} \prod_{e \in I} x_{e}=y^{n-r} \cdot \sum_{l \in \mathcal{I}} x^{l} y^{r-|I|}
$$

where r is the rank of the matroid M. (y^{n-r} factor is crucial.)
Theorem [Anari-Liu-Oveis Gharan-Vinzant '19, Brändén-Huh '19]: For any matroid the polynomial q_{M} is CLC/Lorentzian.

Corollary: Mason's strongest conjecture holds.
Proof: $q_{M}(t, t, \ldots, t, s)=\sum_{k=0}^{n} I_{k} t^{k} s^{n-k}$ is CLC \Longleftrightarrow ULC coefficients.

Proof that the independent set polynomial is CLC

Independent set generating polynomial for $M=(E, \mathcal{I})$ with $|E|=n$:

$$
q_{M}(x, y):=\sum_{I \in \mathcal{I}} x^{\prime} y^{n-|I|}=\sum_{I \in \mathcal{I}} y^{n-|| |} \prod_{e \in I} x_{e}
$$

What does $\partial_{X_{e}}$ do? Matroid contraction.
What about ∂_{y}^{k} ? Matroid truncation: $\mathcal{I}_{n-k}:=\{I \in \mathcal{I}:|I| \leq n-k\}$. Easy to verify the matroid axioms in terms of the independent sets.

For all $\partial_{x}^{\mu} \partial_{y}^{k}$ such that $|\mu|+k \leq n-2$, the polynomial $\partial_{x}^{\mu} \partial_{y}^{k} q_{M}$ is a tweaked version of independent set generating polynomial of a matroid.

Support does not depend on value of coefficients \Longrightarrow indecomposable.
Leaves one thing to check, by induction: Given any matroid M on $|E|=n \geq 2$ elements, need to show that

$$
\partial_{y}^{n-2} q_{M}(\boldsymbol{x}, y)=\left[\begin{array}{l}
x \\
y
\end{array}\right]^{\top} Q\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

is such that Q is Lorentz.

Proof that the independent set polynomial is CLC

Given any matroid M on $|E|=n \geq 2$ elements, need to show that

$$
\partial_{y}^{n-2} q_{M}(\boldsymbol{x}, y)=\left[\begin{array}{l}
x \\
y
\end{array}\right]^{\top} Q\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

is such that Q is Lorentz. Compute:

$$
\frac{2 \cdot \partial_{y}^{n-2} q_{M}(\boldsymbol{x}, y)}{(n-2)!}=n(n-1) \cdot y^{2}+2(n-1) \cdot \sum_{e \in E} x_{e} y+2 \cdot \sum_{\{e, f\} \in \mathcal{I}} x_{e} x_{f}
$$

Recall: This is scaled version of an independent set polynomial, so we have that $\sum_{\{e, f\} \in \mathcal{I}} x_{e} x_{f}=\sum_{\{e, f\} \in \mathcal{B}} x_{e} x_{f}$ is CLC (\mathcal{B} of truncated matroid).

So: $Q=\left[\begin{array}{cc}Q_{\mathcal{B}} & (n-1) \cdot \mathbf{1}_{E} \\ (n-1) \cdot \mathbf{1}_{E}^{\top} & n(n-1)\end{array}\right]$, where $Q_{\mathcal{B}}$ is Lorentz since it corresponds to the basis generating polynomial of the truncated matroid.

Exercise: The matrix Q is also Lorentz.

Outline

(1) Connection to matroids

- Properties and examples of matroids
- Basis exchange graph
- Basis generating polynomials are CLC
- Lorentzian polynomials
(2) Mason's strongest conjecture
- The independent set polynomial
- Independent set polynomials are CLC
(3) Sampling bases of a matroid
- Sampling via random walks
- Mixing time via λ_{2} (second largest eigenvalue)
- Local-to-global theorem for λ_{2}
- Basis sampling overview
(4) Foreshadowing: Counting bases in the intersection of two matroids

Sampling via random walks

Goal: Given a matroid $M=(E, \mathcal{B})$, sample uniformly from \mathcal{B}.
Problem: Number of bases is often exponential in $n=|E|$; e.g. there are m^{m-2} spanning trees of the complete graph on $m \approx \sqrt{n}$ vertices.

One approach: The basis exchange graph gives us a way to "walk" to different bases. Given a membership oracle (tells if a given set is a basis or not), we can:
(1) Start at some basis B_{0}.
(2) Remove a random element e from B_{0}.
(3) Add a random element f, given that $\left(B_{0} \backslash\{e\}\right) \cup\{f\} \in \mathcal{B}$.
(9) Call this new basis $B_{1}:=\left(B_{0} \backslash\{e\}\right) \cup\{f\}$.

Equivalent: Randomly walking along edges of the basis exchange graph.
As the number of iterations/steps increases, the randomness increases.
Eventually: "Random enough" so that B_{k} is \approx uniformly random.

How good is a random walk?

Good news: Random walk gives an algorithm for \approx uniform sampling.
Problem: What if the basis exchange graph is similar to a path or cycle?

- Starting at one end of the path/cycle means that it will take $O(|\mathcal{B}|)$ steps to even see the other end.
- The number of steps needed is at least $O(|\mathcal{B}|)>$ exponential. However: If graph is complete, then one step suffices. (But $|E| \approx|\mathcal{B}|$.)
Consider the respective transition matrices:

$$
\begin{gathered}
T_{C_{n}}=\frac{1}{2}\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 1 \\
1 & 0 & 1 & 0 & \cdots & 0 \\
0 & 1 & 0 & 1 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 0 & 0 & \cdots & 0
\end{array}\right], \quad T_{K_{n}}=\frac{1}{n-1}\left[\begin{array}{cccccc}
0 & 1 & 1 & 1 & \cdots & 1 \\
1 & 0 & 1 & 1 & \cdots & 1 \\
1 & 1 & 0 & 1 & \cdots & 1 \\
1 & 1 & 1 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & 1 & \cdots & 0
\end{array}\right] \\
\operatorname{eig}\left(T_{C_{n}}\right)=\left(1, \cos \left(\frac{2 \pi}{n}\right), \cos \left(\frac{4 \pi}{n}\right), \ldots\right), \operatorname{eig}\left(T_{K_{n}}\right)=\left(1,-\frac{1}{n-1}, \ldots,-\frac{1}{n-1}\right) .
\end{gathered}
$$

Mixing time of a random walk

Cycle graph: $\lambda_{2} \approx 1-\frac{1}{n^{2}}$, and complete graph: $\lambda_{2}=-\frac{1}{n-1}$.
Upshot: Second largest eigenvalue of the transition matrix is a measure of how "bottlenecky" the graph is (see also: Cheeger constant).

Roughly: For nice random walks, we have

$$
t_{\operatorname{mix}} \leq O_{\epsilon}\left(\left[1-\lambda_{2}(T)\right]^{-1}\right)
$$

where $t_{\text {mix }}$ is the mixing time of the random walk $=$ number of steps until random walk is close to uniform. Want $\lambda_{2}(T)$ to be small.

Now: The Hessian matrix of basis generating polynomial of a matroid has small second eigenvalue. Can we relate this to the second eigenvalue of the transition matrix for the random walk?

Local random walks

First: Let $M=(E, \mathcal{B})$ be a rank-two matroid. Consider the random walk on E (instead of \mathcal{B}) with e, f connected by an edge whenever $\{e, f\} \in \mathcal{B}$.
"Dual" to the basis exchange walk:

- Add random element, then remove random element (reverse order).
- Anari-Liu-Oveis Gharan-Vinzant '19: Dual walk and basis exchange walk have the same non-zero eigenvalues.

Transition matrix is precisely Q up to scalar, where $p_{M}(\boldsymbol{x})=\boldsymbol{x}^{\top} Q \boldsymbol{x}$ is the basis generating polynomial. CLC \Longrightarrow small second eigenvalue.

Therefore: We have small mixing time for rank-two matroids.
How do we generalize this? By considering minors (contractions and truncations) of any matroid M, we can look at such "local" walks with respect to any independent set $I \in \mathcal{I} . \Longrightarrow$ Local-to-global theorem.

Local-to-global theorem

Given a matroid $M=(E, \mathcal{I})$, fix any $I \in \mathcal{I}$ with $|I|=k$. Define:

- $E_{I}:=$ all independent sets J such that $I \subset J$ and $|J|=k+1$.
- $\mathcal{B}_{I}:=$ all independent sets J such that $I \subset J$ and $|J|=k+2$.

Equivalent: Contract for all $e \in I$, and then truncate to rank two.
In terms of polynomials: $\left(\prod_{e \in I} \partial_{x_{e}}\right) p_{M} \Longrightarrow$ look at Hessian matrix.
Kaufman-Oppenheim '18, Anari-Liu-Oveis Gharan-Vinzant '19: If the second eigenvalue of the transition matrix of the local walk (previous slide) corresponding to I is small for every $I \in \mathcal{I}$, then the second eigenvalue of the transition matrix of the basis exchange walk is small.

Idea: Can "patch" the local walks together to hit all bases.
Note: Original result [KO '18] is for more general simplicial complexes.
Corollary: Matroid basis generating polynomial is $\mathrm{CLC} \Longrightarrow$ small mixing time for the basis exchange walk.

Basis sampling overview

Main idea: Small second eigenvalue of transition matrix implies small mixing time for the random walk.

Kaufman-Oppenheim '18: "Local" second eigenvalues being small implies the "global" second eigenvalue is small.

Anari-Liu-Oveis Gharan-Vinzant '19: "Local" eigenvalues correspond precisely to eigenvalues of the Hessian of some derivatives applied to the "global" generating polynomial.

CLC property precisely captures this information.

In fact: Non-uniform sampling allowed as long as polynomial is CLC.
CLC implies matroid support. \Longrightarrow This only works for matroids?
Actually: Second eigenvalue ≤ 0 (Lorentz matrices) is stronger than what is actually needed to use the results of [KO '18].
Open question: Is there a theory of CLC-like polynomials where the second eigenvalue is at most some $\epsilon>0$ (or $\frac{\epsilon}{n}>0$, or $\frac{\epsilon}{d}>0$, etc.)?

Outline

(1) Connection to matroids

- Properties and examples of matroids
- Basis exchange graph
- Basis generating polynomials are CLC
- Lorentzian polynomials
(2) Mason's strongest conjecture
- The independent set polynomial
- Independent set polynomials are CLC
(3) Sampling bases of a matroid
- Sampling via random walks
- Mixing time via λ_{2} (second largest eigenvalue)
- Local-to-global theorem for λ_{2}
- Basis sampling overview

4 Foreshadowing: Counting bases in the intersection of two matroids

Counting the intersection of two matroids

Fact: The intersection of the bases of two matroids is not itself a matroid. The generating polynomial is not CLC.
E.g.: Perfect matchings of a bipartite graph G on vertices $V_{1} \sqcup V_{2}$ with edges E. Define matroids $M_{i}=\left(E, \mathcal{B}_{i}\right)$ with $\mathcal{B}_{i}:=$ choices of edges such that each $v \in V_{i}$ is incident on exactly one edge.

Therefore: Matroid intersection captures the permanent (\#P-hard).

One way to count:

$$
\langle p, q\rangle:=\sum_{S} p_{S} q_{S} \quad \Longrightarrow \quad\left\langle p_{M_{1}}, p_{M_{2}}\right\rangle=\#\left(\mathcal{B}_{1} \cap \mathcal{B}_{2}\right) .
$$

We also have $\langle p, q\rangle=\left.\prod_{i=1}^{n}\left(1+\partial_{x_{i}} \partial_{z_{i}}\right)\right|_{x=z=0}[p(\boldsymbol{x}) \cdot q(z)]$.
Question: Can we bound approximate this inner product? Is there a connection to real stability preservers? Algorithmic implications?

