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Notation

Polynomial notation:
R,R+,C,Z+ := reals, non-negative reals, complex numbers,
non-negative integers.
xµ :=

∏
i xµi

i and µ ≤ λ is entrywise.
R[x] := v.s. of real polynomials in n variables.
R+[x] := v.s. of real polynomials with non-negative coefficients.
Rλ[x] := v.s. of polynomials of degree at most λi in xi .
For p ∈ R[x], we write p(x) =

∑
µ pµxµ.

For d-homogeneous p ∈ R[x], we write p(x) =
∑
|µ|=d pµxµ.

The support of p is the set of µ ∈ Zn
+ for which pµ 6= 0.

d
dx = ∂

∂x = ∂x := derivative with respect to x , and ∂µ
x :=

∏
i ∂

µixi .
p(a · t + b) = p(a1t + b1, . . . , ant + bn) ∈ Rλ1+···+λn [t] is a linear
restriction of the polynomial p ∈ Rλ[x], where a ∈ Rn

+ and b ∈ Rn.
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Matroids

Matroid: M = (E , I) where E is the ground set and I ⊆ 2E are the
independent subsets, which satisfy:

1 Nonempty: I 6= ∅.
2 Hereditary: B ∈ I and A ⊆ B implies A ∈ I.
3 Exchange/Augmentation: For all A,B ∈ I such that |A| < |B|,

there exists e ∈ B \ A such that A ∪ {e} ∈ I.
E.g.: A set of vectors in a vector space, with I given by linearly
independent subsets (linear matroid). The set of edges of a graph, with
I given by subsets with no cycles (graphic matroid). Many more...

Maximal B ∈ I are the bases, B ⊂ I, of M. Another definition of M:
3 Exchange: For any bases B1,B2 ∈ B and any e1 ∈ B1 \ B2, there

exists e2 ∈ B2 \ B1 such that (B1 \ {e1}) ∪ {e2} ∈ B.
The spanning tree polynomial is a basis-generating polynomial. Others?
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Examples of matroids

Linear matroid example: E = {(1, 0, 0), (1, 1, 0), (0, 1, 0), (1, 1, 1)} ⊂ R3,
with I given by linearly independent subsets.

Then I consists of the empty set, all one-element subsets, all
two-elements subsets, and all three-element subsets containing (1, 1, 1).

The bases of M = (E , I) are the three-element sets in I; they are
precisely the linear bases of R3. The rank of M is therefore 3.

Uniform matroid example: Let E be any set, and let I be the set of all
subsets of size at most d (for any d).

The bases of M are the d-element sets in I, and the rank of M is d .

The basis generating polynomial is the elementary symmetric polynomial,
which is real stable. However, not all basis generating polynomials are
real stable.
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Basis exchange for linear/graphic matroids

Matroid: M = (E ,B) where E is the ground set and B ⊂ 2E are the
bases of M. They are all of the same size, satisfying:

Basis exchange: For any bases B1,B2 ∈ B and any e1 ∈ B1 \ B2,
there exists e2 ∈ B2 \ B1 such that (B1 \ {e1}) ∪ {e2} ∈ B.

Linear matroids: Let B1,B2 be two different bases of Cn, and fix some
e1 ∈ B1 \ B2. Then B1 \ {e1} spans V . Since B2 is a basis, there is some
e2 ∈ B2 \ V . With this, (B1 \ {e1}) ∪ {e2} is another basis of Cn.

Graphic matroids: Spanning trees of a connected graph.
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Basis exchange for graphic matroids
Basis exchange: For any bases B1,B2 ∈ B and any e1 ∈ B1 \ B2, there
exists e2 ∈ B2 \ B1 such that (B1 \ {e1}) ∪ {e2} ∈ B.

Graphic matroids: Let B1,B2 be two different spanning trees of a
connected graph G , and fix some e1 ∈ B1 \ B2.

1 Remove e1 from B1 to partition the vertices V = U tW based on
which vertices are connected by edges in B1 \ {e1} (pictured).

2 Pick an edge e2 ∈ B2 which connects U and W , and add it B1.
3 The set (B1 \ {e1}) ∪ {e2} must be a spanning tree, since it has no

cycles and connects all vertices.
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Basis exchange graph

Given any matroid, M = (E ,B), construct a graph with the bases as
vertices. Let two bases be connected by an edge if there is an exchange to
go from one to the other. (That is, if |B1 \ B2| = 1 ⇐⇒ |B1∆B2| = 2.)

Fact: The basis exchange graph of any matroid is connected.

Example: E = {(1, 0, 0), (1, 1, 0), (0, 1, 0), (1, 1, 1)} = {e1, e2, e3, e4}.

Uniform matroid: Regular, highly symmetric graph.
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Basis exchange graph

Given any matroid, M = (E ,B), construct a graph with the bases as
vertices. Let two bases be connected by an edge if there is an exchange to
go from one to the other. (That is, if |B1 \ B2| = 1 ⇐⇒ |B1∆B2| = 2.)

Fact: The basis exchange graph of any matroid is connected.
Proof: For B0,B′ ∈ B, pick any e1 ∈ B0 \ B′ and move along an edge to
B1 := (B0 \ {e1}) ∪ {e2} for some e2 ∈ B′ \ B0. We are guaranteed that
|B1 \ B′| < |B0 \ B′| <∞ in this case. By continuing this process, we
eventually have |Bk \ B′| = 0. Since |Bk | = |B′|, we in fact have Bk = B′.

Corollary: If |B| ≥ 2 and every e ∈ E is included in some basis, then there
is no non-trivial partition E := F t G such that: for all B ∈ B either
B ⊆ F or B ⊆ G .
Proof: Suppose such a partition exists. By assumption, there are bases
B1 ⊆ F and B2 ⊆ G . Therefore, |B1 \ B2| = |B1| ≥ 2. Since this is true of
all such bases, there is no way to move from B1 to B2 via exchanges.
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Completely log-concave (CLC) polynomials

Definition (Gurvits ’09, Anari-Oveis Gharan-Vinzant ’19)
A d-homogeneous polynomial p ∈ R+[x] is completely log-concave
(CLC) if for any choice of v1, . . . , vk ∈ Rn

+ for any k, we have that

∇v1 · · · ∇vk p :=
(∑

i v1i∂xi

)
· · ·
(∑

i vki∂xi

)
p

is log-concave in the positive orthant or ≡ 0.

Theorem (Anari-Oveis Gharan-Vinzant ’19; see also Brändén-Huh ’19)
A d-homogeneous polynomial p ∈ R+[x] is CLC iff:

1 For all µ ∈ Zn
+ with |µ| ≤ d − 2, ∂µ

x p is indecomposable.
2 For all µ ∈ Zn

+ with |µ| = d − 2, ∂µ
x p = x>Qx with Q Lorentz.

Indecomposable polynomial: p cannot be written as p = f + g where
f , g 6≡ 0 depend on disjoint variables. Condition on the support of p.
Lorentz matrix: Signature (+,−,−, . . . ,−), or in the closure.
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Basis generating polynomials

Corollary: If |B| ≥ 2 and every e ∈ E is included in some basis, then there
is no non-trivial partition E := F t G such that: for all B ∈ B either
B ⊆ F or B ⊆ G .

Basis generating polynomial: Given a matroid M = (E ,B), we define

pM(x) :=
∑
B∈B

xB =
∑
B∈B

∏
e∈B

xe ∈ R1[x] = R1[(xe)e∈E ].

Indecomposable polynomial: p cannot be written as p = f + g where
f , g 6≡ 0 depend on disjoint variables.

Corollary: Every basis generating polynomial is indecomposable.

More: pM/e(x) = ∂xe pM(x), where M/e denotes matroid contraction,
where one keeps all bases in B that contain e (and then remove e from all).

This is another matroid, so ∂µ
x pM is indecomposable for all |µ| ≤ d − 2.
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Basis generating polynomials
Basis generating polynomial: Given a matroid M = (E ,B), we define

pM(x) :=
∑
B∈B

xB =
∑
B∈B

∏
e∈B

xe ∈ R1[x] = R1[(xe)e∈E ].

Last slide: ∂µ
x pM is indecomposable for all |µ| ≤ d − 2.

Now: For |µ| = d − 2, we have ∂µ
x p is the basis-generating polynomial of

a rank-two matroid. Fact: The associated quadratic form is Lorentz.

Proof: Remove all e ∈ E which are outside of all bases. The following is
then an equivalence relation:

e ∼ f for e, f ∈ E ⇐⇒ {e, f } 6∈ B.

To see this, we just need to show transitivity. Suppose e ∼ f and f ∼ g ,
but {e, g} ∈ B. Pick {f , h} ∈ B and try to do basis exchange from
B1 = {f , h} to B2 = {e, g} after removing e1 = h. This forces either
{e, f } or {f , g} to be a basis in B.
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Basis generating polynomials

Fact: The quadratic form associated to a rank-two matroid is Lorentz.

Proof: Remove all e ∈ E which are outside of all bases. The following is
then an equivalence relation:

e ∼ f for e, f ∈ E ⇐⇒ {e, f } 6∈ B.

Let E = S1 t S2 t · · · t Sm be the equivalence classes of E . We can write
the basis generating polynomial as

2 · pM(x) = 2 ·
∑
B∈B

xB = x>
(

1E 1>E −
m∑

i=1
1Si 1>Si

)
x =: x>Qx.

Subtracting a PSD matrix can only decrease eigenvalues, and Q is real
symmetric with non-negative entries. Therefore Q is Lorentz.

Corollary: Every matroid basis generating polynomial is CLC.
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Equivalent theory: Lorentzian polynomials
Every matroid basis generating polynomial is CLC. A sort of converse to
this is also true; [Brändén-Huh ’19] calls such polynomials Lorentzian.

Theorem (Anari-Oveis Gharan-Vinzant ’19)
A d-homogeneous polynomial p ∈ R+[x] is CLC iff:

1 For all µ ∈ Zn
+ with |µ| ≤ d − 2, ∂µ

x p is indecomposable.
2 For all µ ∈ Zn

+ with |µ| = d − 2, ∂µ
x p = x>Qx with Q Lorentz.

Theorem (Brändén-Huh ’19; definition of Lorentzian polynomial)
A d-homogeneous multiaffine polynomial p ∈ R+[x] is CLC iff:

1 The support of p is the set of bases of a matroid.
2 For all µ ∈ Zn

+ with |µ| = d − 2, ∂µ
x p = x>Qx with Q Lorentz.

For non-multiaffine: Replace “the set of bases of a matroid” with
“M-convex”. =⇒ Natural generalization of matroid to “higher degree”.
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Mason’s strongest conjecture
Conjecture [Mason ’75]: If M = (E , I) is a matroid such that |E | = n,
and Ik denotes the number of independent sets of M of size k, then
(Ik)n

k=0 forms an ultra log-concave sequence with respect to n.

Weaker Mason’s conjecture: Log-concavity [Adiprasito-Huh-Katz ’15].

Independent set generating polynomial for M = (E , I) with |E | = n:

qM(x, y) :=
∑
I∈I

x Iyn−|I| =
∑
I∈I

yn−|I|∏
e∈I

xe = yn−r ·
∑
I∈I

x Iy r−|I|

where r is the rank of the matroid M. (yn−r factor is crucial.)

Theorem [Anari-Liu-Oveis Gharan-Vinzant ’19, Brändén-Huh ’19]:
For any matroid the polynomial qM is CLC/Lorentzian.

Corollary: Mason’s strongest conjecture holds.

Proof: qM(t, t, . . . , t, s) =
n∑

k=0
Iktksn−k is CLC ⇐⇒ ULC coefficients.

Jonathan Leake (TU Berlin) Applications of CLC Polynomials Winter 2020-2021 17 / 28



Proof that the independent set polynomial is CLC
Independent set generating polynomial for M = (E , I) with |E | = n:

qM(x, y) :=
∑
I∈I

x Iyn−|I| =
∑
I∈I

yn−|I|∏
e∈I

xe .

What does ∂xe do? Matroid contraction.
What about ∂k

y ? Matroid truncation: In−k := {I ∈ I : |I| ≤ n − k}.
Easy to verify the matroid axioms in terms of the independent sets.

For all ∂µ
x ∂k

y such that |µ|+ k ≤ n − 2, the polynomial ∂µ
x ∂k

y qM is a
tweaked version of independent set generating polynomial of a matroid.

Support does not depend on value of coefficients =⇒ indecomposable.

Leaves one thing to check, by induction: Given any matroid M on
|E | = n ≥ 2 elements, need to show that

∂n−2
y qM(x, y) = [ x

y ]>Q [ x
y ]

is such that Q is Lorentz.
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Proof that the independent set polynomial is CLC

Given any matroid M on |E | = n ≥ 2 elements, need to show that

∂n−2
y qM(x, y) = [ x

y ]>Q [ x
y ]

is such that Q is Lorentz. Compute:

2 · ∂n−2
y qM(x, y)
(n − 2)! = n(n − 1) · y2 + 2(n − 1) ·

∑
e∈E

xey + 2 ·
∑
{e,f }∈I

xexf .

Recall: This is scaled version of an independent set polynomial, so we
have that

∑
{e,f }∈I xexf =

∑
{e,f }∈B xexf is CLC (B of truncated matroid).

So: Q =
[

QB (n − 1) · 1E
(n − 1) · 1>E n(n − 1)

]
, where QB is Lorentz since it

corresponds to the basis generating polynomial of the truncated matroid.

Exercise: The matrix Q is also Lorentz.
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Sampling via random walks
Goal: Given a matroid M = (E ,B), sample uniformly from B.

Problem: Number of bases is often exponential in n = |E |; e.g. there are
mm−2 spanning trees of the complete graph on m ≈

√
n vertices.

One approach: The basis exchange graph gives us a way to “walk” to
different bases. Given a membership oracle (tells if a given set is a basis or
not), we can:

1 Start at some basis B0.
2 Remove a random element e from B0.
3 Add a random element f , given that (B0 \ {e}) ∪ {f } ∈ B.
4 Call this new basis B1 := (B0 \ {e}) ∪ {f }.

Equivalent: Randomly walking along edges of the basis exchange graph.

As the number of iterations/steps increases, the randomness increases.

Eventually: “Random enough” so that Bk is ≈ uniformly random.
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How good is a random walk?
Good news: Random walk gives an algorithm for ≈ uniform sampling.

Problem: What if the basis exchange graph is similar to a path or cycle?
Starting at one end of the path/cycle means that it will take O(|B|)
steps to even see the other end.
The number of steps needed is at least O(|B|) > exponential.

However: If graph is complete, then one step suffices. (But |E | ≈ |B|.)

Consider the respective transition matrices:

TCn = 1
2



0 1 0 0 · · · 1
1 0 1 0 · · · 0
0 1 0 1 · · · 0
0 0 1 0 · · · 0
...

...
...

... . . . ...
1 0 0 0 · · · 0


, TKn = 1

n − 1



0 1 1 1 · · · 1
1 0 1 1 · · · 1
1 1 0 1 · · · 1
1 1 1 0 · · · 1
...

...
...

... . . . ...
1 1 1 1 · · · 0


eig(TCn ) =

(
1, cos(2π

n ), cos(4π
n ), . . .

)
, eig(TKn ) =

(
1,− 1

n−1 , . . . ,−
1

n−1

)
.
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Mixing time of a random walk

Cycle graph: λ2 ≈ 1− 1
n2 , and complete graph: λ2 = − 1

n−1 .

Upshot: Second largest eigenvalue of the transition matrix is a measure of
how “bottlenecky” the graph is (see also: Cheeger constant).

Roughly: For nice random walks, we have

tmix ≤ Oε

(
[1− λ2(T )]−1

)
,

where tmix is the mixing time of the random walk = number of steps until
random walk is close to uniform. Want λ2(T ) to be small.

Now: The Hessian matrix of basis generating polynomial of a matroid has
small second eigenvalue. Can we relate this to the second eigenvalue
of the transition matrix for the random walk?
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Local random walks

First: Let M = (E ,B) be a rank-two matroid. Consider the random walk
on E (instead of B) with e, f connected by an edge whenever {e, f } ∈ B.

“Dual” to the basis exchange walk:
Add random element, then remove random element (reverse order).
Anari-Liu-Oveis Gharan-Vinzant ’19: Dual walk and basis
exchange walk have the same non-zero eigenvalues.

Transition matrix is precisely Q up to scalar, where pM(x) = x>Qx is
the basis generating polynomial. CLC =⇒ small second eigenvalue.

Therefore: We have small mixing time for rank-two matroids.

How do we generalize this? By considering minors (contractions and
truncations) of any matroid M, we can look at such “local” walks with
respect to any independent set I ∈ I. =⇒ Local-to-global theorem.
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Local-to-global theorem

Given a matroid M = (E , I), fix any I ∈ I with |I| = k. Define:
EI := all independent sets J such that I ⊂ J and |J | = k + 1.
BI := all independent sets J such that I ⊂ J and |J | = k + 2.

Equivalent: Contract for all e ∈ I, and then truncate to rank two.
In terms of polynomials: (

∏
e∈I ∂xe ) pM =⇒ look at Hessian matrix.

Kaufman-Oppenheim ’18, Anari-Liu-Oveis Gharan-Vinzant ’19: If
the second eigenvalue of the transition matrix of the local walk (previous
slide) corresponding to I is small for every I ∈ I, then the second
eigenvalue of the transition matrix of the basis exchange walk is small.
Idea: Can “patch” the local walks together to hit all bases.
Note: Original result [KO ’18] is for more general simplicial complexes.

Corollary: Matroid basis generating polynomial is CLC =⇒ small mixing
time for the basis exchange walk.
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Basis sampling overview

Main idea: Small second eigenvalue of transition matrix implies small
mixing time for the random walk.

Kaufman-Oppenheim ’18: “Local” second eigenvalues being small
implies the “global” second eigenvalue is small.

Anari-Liu-Oveis Gharan-Vinzant ’19: “Local” eigenvalues correspond
precisely to eigenvalues of the Hessian of some derivatives applied to the
“global” generating polynomial.

CLC property precisely captures this information.
In fact: Non-uniform sampling allowed as long as polynomial is CLC.

CLC implies matroid support. =⇒ This only works for matroids?

Actually: Second eigenvalue ≤ 0 (Lorentz matrices) is stronger than what
is actually needed to use the results of [KO ’18].
Open question: Is there a theory of CLC-like polynomials where the
second eigenvalue is at most some ε > 0 (or ε

n > 0, or ε
d > 0, etc.)?
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Counting the intersection of two matroids

Fact: The intersection of the bases of two matroids is not itself a matroid.
The generating polynomial is not CLC.

E.g.: Perfect matchings of a bipartite graph G on vertices V1 t V2 with
edges E . Define matroids Mi = (E ,Bi ) with Bi := choices of edges such
that each v ∈ Vi is incident on exactly one edge.

Therefore: Matroid intersection captures the permanent (#P-hard).

One way to count:

〈p, q〉 :=
∑

S
pSqS =⇒ 〈pM1 , pM2〉 = #(B1 ∩ B2).

We also have 〈p, q〉 =
n∏

i=1
(1 + ∂xi∂zi )

∣∣∣∣
x=z=0

[p(x) · q(z)] .

Question: Can we bound approximate this inner product? Is there a
connection to real stability preservers? Algorithmic implications?
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