Applications of CLC/Lorentzian Polynomials Polynomial Capacity: Theory, Applications, Generalizations

Jonathan Leake

Technische Universität Berlin

November 26th, 2020

Notation

Polynomial notation:

- $\mathbb{R}, \mathbb{R}_+, \mathbb{C}, \mathbb{Z}_+ :=$ reals, non-negative reals, complex numbers, non-negative integers.
- $\mathbf{x}^{\boldsymbol{\mu}} := \prod_i x_i^{\mu_i}$ and $\boldsymbol{\mu} \leq \boldsymbol{\lambda}$ is entrywise.
- $\mathbb{R}[\mathbf{x}] := v.s.$ of real polynomials in *n* variables.
- $\mathbb{R}_+[\mathbf{x}] := v.s.$ of real polynomials with non-negative coefficients.
- $\mathbb{R}^{\lambda}[\mathbf{x}] := v.s.$ of polynomials of degree at most λ_i in x_i .
- For $p \in \mathbb{R}[\mathbf{x}]$, we write $p(\mathbf{x}) = \sum_{\mu} p_{\mu} \mathbf{x}^{\mu}$.
- For *d*-homogeneous $p \in \mathbb{R}[\mathbf{x}]$, we write $p(\mathbf{x}) = \sum_{|\mu|=d} p_{\mu} \mathbf{x}^{\mu}$.
- The **support** of p is the set of $\mu \in \mathbb{Z}^n_+$ for which $p_{\mu} \neq 0$.
- $\frac{d}{dx} = \frac{\partial}{\partial x} = \partial_x := \text{derivative with respect to } x$, and $\partial_x^{\mu} := \prod_i \partial_{x_i}^{\mu_i}$.
- $p(\boldsymbol{a} \cdot \boldsymbol{t} + \boldsymbol{b}) = p(a_1 \boldsymbol{t} + b_1, \dots, a_n \boldsymbol{t} + b_n) \in \mathbb{R}^{\lambda_1 + \dots + \lambda_n}[\boldsymbol{t}]$ is a linear restriction of the polynomial $p \in \mathbb{R}^{\lambda}[\boldsymbol{x}]$, where $\boldsymbol{a} \in \mathbb{R}^n_+$ and $\boldsymbol{b} \in \mathbb{R}^n$.

Outline

Connection to matroids

- Properties and examples of matroids
- Basis exchange graph
- Basis generating polynomials are CLC
- Lorentzian polynomials
- 2 Mason's strongest conjecture
 - The independent set polynomial
 - Independent set polynomials are CLC
- 3 Sampling bases of a matroid
 - Sampling via random walks
 - Mixing time via λ_2 (second largest eigenvalue)
 - Local-to-global theorem for λ_2
 - Basis sampling overview

Foreshadowing: Counting bases in the intersection of two matroids

Outline

Connection to matroids

- Properties and examples of matroids
- Basis exchange graph
- Basis generating polynomials are CLC
- Lorentzian polynomials

Mason's strongest conjecture

- The independent set polynomial
- Independent set polynomials are CLC

3 Sampling bases of a matroid

- Sampling via random walks
- Mixing time via λ_2 (second largest eigenvalue)
- Local-to-global theorem for λ_2
- Basis sampling overview

Foreshadowing: Counting bases in the intersection of two matroids

Matroids

Matroid: $M = (E, \mathcal{I})$ where *E* is the **ground set** and $\mathcal{I} \subseteq 2^{E}$ are the **independent** subsets, which satisfy:

O Nonempty: $\mathcal{I} \neq \emptyset$.

2 Hereditary: $B \in \mathcal{I}$ and $A \subseteq B$ implies $A \in \mathcal{I}$.

Solution Exchange/Augmentation: For all $A, B \in \mathcal{I}$ such that |A| < |B|, there exists $e \in B \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$.

E.g.: A set of vectors in a vector space, with \mathcal{I} given by linearly independent subsets (**linear matroid**). The set of edges of a graph, with \mathcal{I} given by subsets with no cycles (**graphic matroid**). Many more...

Maximal $B \in \mathcal{I}$ are the bases, $\mathcal{B} \subset \mathcal{I}$, of M. Another definition of M:

Sector and Bases B₁, B₂ ∈ B and any e₁ ∈ B₁ \ B₂, there exists e₂ ∈ B₂ \ B₁ such that (B₁ \ {e₁}) ∪ {e₂} ∈ B.

The spanning tree polynomial is a basis-generating polynomial. Others?

Examples of matroids

Linear matroid example: $E = \{(1,0,0), (1,1,0), (0,1,0), (1,1,1)\} \subset \mathbb{R}^3$, with \mathcal{I} given by linearly independent subsets.

Then \mathcal{I} consists of the empty set, all one-element subsets, all two-elements subsets, and all three-element subsets containing (1,1,1).

The **bases** of $M = (E, \mathcal{I})$ are the three-element sets in \mathcal{I} ; they are precisely the linear bases of \mathbb{R}^3 . The **rank** of *M* is therefore 3.

Uniform matroid example: Let *E* be any set, and let \mathcal{I} be the set of all subsets of size at most *d* (for any *d*).

The bases of M are the d-element sets in \mathcal{I} , and the **rank** of M is d.

The basis generating polynomial is the elementary symmetric polynomial, which is real stable. However, not all basis generating polynomials are real stable.

Basis exchange for linear/graphic matroids

Matroid: M = (E, B) where *E* is the **ground set** and $B \subset 2^E$ are the **bases** of *M*. They are all of the same size, satisfying:

Basis exchange: For any bases B₁, B₂ ∈ B and any e₁ ∈ B₁ \ B₂, there exists e₂ ∈ B₂ \ B₁ such that (B₁ \ {e₁}) ∪ {e₂} ∈ B.

Linear matroids: Let B_1, B_2 be two different bases of \mathbb{C}^n , and fix some $e_1 \in B_1 \setminus B_2$. Then $B_1 \setminus \{e_1\}$ spans V. Since B_2 is a basis, there is some $e_2 \in B_2 \setminus V$. With this, $(B_1 \setminus \{e_1\}) \cup \{e_2\}$ is another basis of \mathbb{C}^n .

Graphic matroids: Spanning trees of a connected graph.

Basis exchange for graphic matroids

Basis exchange: For any bases $B_1, B_2 \in \mathcal{B}$ and any $e_1 \in B_1 \setminus B_2$, there exists $e_2 \in B_2 \setminus B_1$ such that $(B_1 \setminus \{e_1\}) \cup \{e_2\} \in \mathcal{B}$.

Graphic matroids: Let B_1, B_2 be two different spanning trees of a connected graph G, and fix some $e_1 \in B_1 \setminus B_2$.

 Remove e₁ from B₁ to partition the vertices V = U ⊔ W based on which vertices are connected by edges in B₁ \ {e₁} (pictured).

2 Pick an edge $e_2 \in B_2$ which connects U and W, and add it B_1 .

The set (B₁ \ {e₁}) ∪ {e₂} must be a spanning tree, since it has no cycles and connects all vertices.

Jonathan Leake (TU Berlin)

Basis exchange graph

Given **any** matroid, M = (E, B), construct a graph with the bases as vertices. Let two bases be connected by an edge if there is an exchange to go from one to the other. (That is, if $|B_1 \setminus B_2| = 1 \iff |B_1 \Delta B_2| = 2$.)

Fact: The basis exchange graph of any matroid is connected.

Example: $E = \{(1,0,0), (1,1,0), (0,1,0), (1,1,1)\} = \{e_1, e_2, e_3, e_4\}.$

Uniform matroid: Regular, highly symmetric graph.

Jonathan Leake (TU Berlin)

Applications of CLC Polynomials

Basis exchange graph

Given **any** matroid, M = (E, B), construct a graph with the bases as vertices. Let two bases be connected by an edge if there is an exchange to go from one to the other. (That is, if $|B_1 \setminus B_2| = 1 \iff |B_1 \Delta B_2| = 2$.)

Fact: The basis exchange graph of any matroid is connected.

Proof: For $B_0, B' \in \mathcal{B}$, pick any $e_1 \in B_0 \setminus B'$ and move along an edge to $B_1 := (B_0 \setminus \{e_1\}) \cup \{e_2\}$ for some $e_2 \in B' \setminus B_0$. We are guaranteed that $|B_1 \setminus B'| < |B_0 \setminus B'| < \infty$ in this case. By continuing this process, we eventually have $|B_k \setminus B'| = 0$. Since $|B_k| = |B'|$, we in fact have $B_k = B'$.

Corollary: If $|B| \ge 2$ and every $e \in E$ is included in some basis, then there is no non-trivial partition $E := F \sqcup G$ such that: for all $B \in \mathcal{B}$ either $B \subseteq F$ or $B \subseteq G$.

Proof: Suppose such a partition exists. By assumption, there are bases $B_1 \subseteq F$ and $B_2 \subseteq G$. Therefore, $|B_1 \setminus B_2| = |B_1| \ge 2$. Since this is true of all such bases, there is no way to move from B_1 to B_2 via exchanges.

Completely log-concave (CLC) polynomials

Definition (Gurvits '09, Anari-Oveis Gharan-Vinzant '19)

A *d*-homogeneous polynomial $p \in \mathbb{R}_+[x]$ is **completely log-concave (CLC)** if for any choice of $v_1, \ldots, v_k \in \mathbb{R}^n_+$ for any *k*, we have that

$$abla_{\mathbf{v}_1} \cdots \nabla_{\mathbf{v}_k} \mathbf{p} := \left(\sum_i \mathbf{v}_{1i} \partial_{\mathbf{x}_i}\right) \cdots \left(\sum_i \mathbf{v}_{ki} \partial_{\mathbf{x}_i}\right) \mathbf{p}$$

is log-concave in the positive orthant or $\equiv 0$.

Theorem (Anari-Oveis Gharan-Vinzant '19; see also Brändén-Huh '19)

A d-homogeneous polynomial $p \in \mathbb{R}_+[\mathbf{x}]$ is CLC iff:

- **9** For all $\mu \in \mathbb{Z}_+^n$ with $|\mu| \le d 2$, $\partial_x^{\mu} p$ is indecomposable.
- **2** For all $\mu \in \mathbb{Z}^n_+$ with $|\mu| = d 2$, $\partial^{\mu}_{x} p = x^{\top} Q x$ with Q Lorentz.

Indecomposable polynomial: *p* cannot be written as p = f + g where $f, g \neq 0$ depend on disjoint variables. **Condition on the support of** *p***. Lorentz matrix:** Signature (+, -, -, ..., -), or in the closure.

Jonathan Leake (TU Berlin)

Applications of CLC Polynomials

Basis generating polynomials

Corollary: If $|B| \ge 2$ and every $e \in E$ is included in some basis, then there is no non-trivial partition $E := F \sqcup G$ such that: for all $B \in \mathcal{B}$ either $B \subseteq F$ or $B \subseteq G$.

Basis generating polynomial: Given a matroid M = (E, B), we define

$$p_M(\mathbf{x}) := \sum_{B \in \mathcal{B}} \mathbf{x}^B = \sum_{B \in \mathcal{B}} \prod_{e \in B} x_e \quad \in \quad \mathbb{R}^1[\mathbf{x}] = \mathbb{R}^1[(x_e)_{e \in E}].$$

Indecomposable polynomial: p cannot be written as p = f + g where $f, g \neq 0$ depend on disjoint variables.

Corollary: Every basis generating polynomial is indecomposable.

More: $p_{M/e}(\mathbf{x}) = \partial_{x_e} p_M(\mathbf{x})$, where M/e denotes **matroid contraction**, where one keeps all bases in \mathcal{B} that contain e (and then remove e from all).

This is another matroid, so $\partial_x^{\mu} p_M$ is indecomposable for all $|\mu| \leq d-2$.

Basis generating polynomials

Basis generating polynomial: Given a matroid M = (E, B), we define

$$p_M(\mathbf{x}) := \sum_{B \in \mathcal{B}} \mathbf{x}^B = \sum_{B \in \mathcal{B}} \prod_{e \in B} x_e \quad \in \quad \mathbb{R}^1[\mathbf{x}] = \mathbb{R}^1[(x_e)_{e \in E}].$$

Last slide: $\partial_x^{\mu} p_M$ is indecomposable for all $|\mu| \leq d - 2$.

Now: For $|\mu| = d - 2$, we have $\partial_x^{\mu} p$ is the basis-generating polynomial of a **rank-two** matroid. **Fact:** The associated quadratic form is Lorentz.

Proof: Remove all $e \in E$ which are outside of all bases. The following is then an equivalence relation:

$$e \sim f$$
 for $e, f \in E \iff \{e, f\} \notin \mathcal{B}$.

To see this, we just need to show transitivity. Suppose $e \sim f$ and $f \sim g$, but $\{e, g\} \in \mathcal{B}$. Pick $\{f, h\} \in \mathcal{B}$ and try to do basis exchange from $B_1 = \{f, h\}$ to $B_2 = \{e, g\}$ after removing $e_1 = h$. This forces either $\{e, f\}$ or $\{f, g\}$ to be a basis in \mathcal{B} .

Jonathan Leake (TU Berlin)

Basis generating polynomials

Fact: The quadratic form associated to a rank-two matroid is Lorentz.

Proof: Remove all $e \in E$ which are outside of all bases. The following is then an equivalence relation:

$$e \sim f$$
 for $e, f \in E \iff \{e, f\} \notin \mathcal{B}$.

Let $E = S_1 \sqcup S_2 \sqcup \cdots \sqcup S_m$ be the equivalence classes of E. We can write the basis generating polynomial as

$$2 \cdot p_M(\mathbf{x}) = 2 \cdot \sum_{B \in \mathcal{B}} \mathbf{x}^B = \mathbf{x}^\top \left(\mathbf{1}_E \mathbf{1}_E^\top - \sum_{i=1}^m \mathbf{1}_{S_i} \mathbf{1}_{S_i}^\top \right) \mathbf{x} =: \mathbf{x}^\top Q \mathbf{x}.$$

Subtracting a PSD matrix can only decrease eigenvalues, and Q is real symmetric with non-negative entries. Therefore Q is Lorentz.

Corollary: Every matroid basis generating polynomial is CLC.

Jonathan Leake (TU Berlin)

Applications of CLC Polynomials

Equivalent theory: Lorentzian polynomials

Every matroid basis generating polynomial is CLC. **A sort of converse to this is also true**; [Brändén-Huh '19] calls such polynomials **Lorentzian**.

Theorem (Anari-Oveis Gharan-Vinzant '19)

A d-homogeneous polynomial $p \in \mathbb{R}_+[\mathbf{x}]$ is CLC iff:

- For all $\mu \in \mathbb{Z}^n_+$ with $|\mu| \le d-2$, $\partial^{\mu}_{x}p$ is indecomposable.
- **2** For all $\mu \in \mathbb{Z}^n_+$ with $|\mu| = d 2$, $\partial^{\mu}_{x} p = x^{\top} Q x$ with Q Lorentz.

Theorem (Brändén-Huh '19; definition of Lorentzian polynomial)

A d-homogeneous multiaffine polynomial $p \in \mathbb{R}_+[\mathbf{x}]$ is CLC iff:

The support of p is the set of bases of a matroid.

2 For all $\mu \in \mathbb{Z}^n_+$ with $|\mu| = d - 2$, $\partial^{\mu}_{x} p = x^{\top} Q x$ with Q Lorentz.

For non-multiaffine: Replace "the set of bases of a matroid" with "M-convex". \implies Natural generalization of matroid to "higher degree".

Jonathan Leake (TU Berlin)

Applications of CLC Polynomials

Outline

Connection to matroids

- Properties and examples of matroids
- Basis exchange graph
- Basis generating polynomials are CLC
- Lorentzian polynomials
- Mason's strongest conjecture
 - The independent set polynomial
 - Independent set polynomials are CLC
- 3 Sampling bases of a matroid
 - Sampling via random walks
 - Mixing time via λ_2 (second largest eigenvalue)
 - Local-to-global theorem for λ_2
 - Basis sampling overview

Foreshadowing: Counting bases in the intersection of two matroids

Mason's strongest conjecture

Conjecture [Mason '75]: If $M = (E, \mathcal{I})$ is a matroid such that |E| = n, and I_k denotes the number of independent sets of M of size k, then $(I_k)_{k=0}^n$ forms an ultra log-concave sequence with respect to n.

Weaker Mason's conjecture: Log-concavity [Adiprasito-Huh-Katz '15].

Independent set generating polynomial for $M = (E, \mathcal{I})$ with |E| = n:

$$q_M(\mathbf{x}, y) := \sum_{I \in \mathcal{I}} \mathbf{x}^I y^{n-|I|} = \sum_{I \in \mathcal{I}} y^{n-|I|} \prod_{e \in I} x_e = y^{n-r} \cdot \sum_{I \in \mathcal{I}} \mathbf{x}^I y^{r-|I|}$$

where r is the rank of the matroid M. $(y^{n-r} \text{ factor is } \mathbf{crucial})$

Theorem [Anari-Liu-Oveis Gharan-Vinzant '19, Brändén-Huh '19]: For any matroid the polynomial q_M is CLC/Lorentzian.

Corollary: Mason's strongest conjecture holds.

Proof:
$$q_M(t, t, ..., t, s) = \sum_{k=0}^n I_k t^k s^{n-k}$$
 is CLC \iff ULC coefficients.

Proof that the independent set polynomial is CLC

Independent set generating polynomial for $M = (E, \mathcal{I})$ with |E| = n:

$$q_M(\mathbf{x}, y) := \sum_{l \in \mathcal{I}} \mathbf{x}^l y^{n-|l|} = \sum_{l \in \mathcal{I}} y^{n-|l|} \prod_{e \in I} x_e.$$

What does ∂_{x_e} do? Matroid contraction. What about ∂_y^k ? Matroid truncation: $\mathcal{I}_{n-k} := \{I \in \mathcal{I} : |I| \le n-k\}$. Easy to verify the matroid axioms in terms of the independent sets.

For all $\partial_x^{\mu} \partial_y^k$ such that $|\mu| + k \le n - 2$, the polynomial $\partial_x^{\mu} \partial_y^k q_M$ is a **tweaked version** of independent set generating polynomial of a matroid.

Support does not depend on value of coefficients \implies indecomposable.

Leaves one thing to check, by induction: Given any matroid M on $|E| = n \ge 2$ elements, need to show that

$$\partial_{y}^{n-2}q_{M}(\mathbf{x},y) = \begin{bmatrix} \mathbf{x} \\ y \end{bmatrix}^{\top} Q\begin{bmatrix} \mathbf{x} \\ y \end{bmatrix}$$

is such that Q is Lorentz.

Jonathan Leake (TU Berlin)

Proof that the independent set polynomial is CLC

Given any matroid *M* on $|E| = n \ge 2$ elements, need to show that

$$\partial_{y}^{n-2}q_{M}(\mathbf{x},y) = \begin{bmatrix} \mathbf{x} \\ y \end{bmatrix}^{\top} Q\begin{bmatrix} \mathbf{x} \\ y \end{bmatrix}$$

is such that Q is Lorentz. Compute:

$$\frac{2\cdot\partial_y^{n-2}q_M(\mathbf{x},y)}{(n-2)!}=n(n-1)\cdot y^2+2(n-1)\cdot\sum_{e\in E}x_ey+2\cdot\sum_{\{e,f\}\in \mathcal{I}}x_ex_f.$$

Recall: This is scaled version of an independent set polynomial, so we have that $\sum_{\{e,f\}\in\mathcal{I}} x_e x_f = \sum_{\{e,f\}\in\mathcal{B}} x_e x_f$ is CLC (\mathcal{B} of truncated matroid).

So: $Q = \begin{bmatrix} Q_{\mathcal{B}} & (n-1) \cdot \mathbf{1}_{E} \\ (n-1) \cdot \mathbf{1}_{E}^{\top} & n(n-1) \end{bmatrix}$, where $Q_{\mathcal{B}}$ is Lorentz since it corresponds to the basis generating polynomial of the truncated matroid. **Exercise:** The matrix Q is also Lorentz.

Jonathan Leake (TU Berlin)

Outline

Connection to matroids

- Properties and examples of matroids
- Basis exchange graph
- Basis generating polynomials are CLC
- Lorentzian polynomials

2 Mason's strongest conjecture

- The independent set polynomial
- Independent set polynomials are CLC

3 Sampling bases of a matroid

- Sampling via random walks
- Mixing time via λ_2 (second largest eigenvalue)
- Local-to-global theorem for λ_2
- Basis sampling overview

Foreshadowing: Counting bases in the intersection of two matroids

Sampling via random walks

Goal: Given a matroid M = (E, B), sample uniformly from B.

Problem: Number of bases is often exponential in n = |E|; e.g. there are m^{m-2} spanning trees of the complete graph on $m \approx \sqrt{n}$ vertices.

One approach: The basis exchange graph gives us a way to "walk" to different bases. Given a membership oracle (tells if a given set is a basis or not), we can:

- Start at some basis B_0 .
- **2** Remove a random element e from B_0 .
- **③** Add a random element f, given that $(B_0 \setminus \{e\}) \cup \{f\} \in \mathcal{B}$.
- Call this new basis $B_1 := (B_0 \setminus \{e\}) \cup \{f\}.$

Equivalent: Randomly walking along edges of the basis exchange graph.

As the number of iterations/steps increases, the randomness increases.

Eventually: "Random enough" so that B_k is \approx uniformly random.

How good is a random walk?

Good news: Random walk gives an algorithm for \approx uniform sampling.

Problem: What if the basis exchange graph is similar to a path or cycle?

- Starting at one end of the path/cycle means that it will take $O(|\mathcal{B}|)$ steps to even **see** the other end.
- The number of steps needed is at least $O(|\mathcal{B}|) > exponential$.

However: If graph is complete, then one step suffices. (But $|E| \approx |\mathcal{B}|$.)

Consider the respective transition matrices:

$$T_{C_n} = \frac{1}{2} \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}, \quad T_{K_n} = \frac{1}{n-1} \begin{bmatrix} 0 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & 1 & 0 & \cdots & 0 \end{bmatrix}$$
$$\operatorname{eig}(T_{C_n}) = \left(1, \cos(\frac{2\pi}{n}), \cos(\frac{4\pi}{n}), \ldots\right), \operatorname{eig}(T_{K_n}) = \left(1, -\frac{1}{n-1}, \ldots, -\frac{1}{n-1}\right).$$

Cycle graph: $\lambda_2 \approx 1 - \frac{1}{n^2}$, and **complete graph:** $\lambda_2 = -\frac{1}{n-1}$.

Upshot: Second largest eigenvalue of the transition matrix is a measure of how "bottlenecky" the graph is (see also: Cheeger constant).

Roughly: For nice random walks, we have

$$t_{\mathsf{mix}} \leq O_{\epsilon}\left([1-\lambda_2(T)]^{-1}
ight),$$

where t_{mix} is the **mixing time** of the random walk = number of steps until random walk is close to uniform. Want $\lambda_2(T)$ to be small.

Now: The Hessian matrix of basis generating polynomial of a matroid has small second eigenvalue. **Can we relate this to the second eigenvalue of the transition matrix for the random walk?**

Local random walks

First: Let M = (E, B) be a rank-two matroid. Consider the random walk on E (instead of B) with e, f connected by an edge whenever $\{e, f\} \in B$.

"Dual" to the basis exchange walk:

- Add random element, then remove random element (reverse order).
- Anari-Liu-Oveis Gharan-Vinzant '19: Dual walk and basis exchange walk have the same non-zero eigenvalues.

Transition matrix is precisely Q up to scalar, where $p_M(x) = x^\top Q x$ is the basis generating polynomial. **CLC** \implies small second eigenvalue.

Therefore: We have small mixing time for rank-two matroids.

How do we generalize this? By considering minors (contractions and truncations) of any matroid M, we can look at such "local" walks with respect to any independent set $I \in \mathcal{I}$. \implies Local-to-global theorem.

Local-to-global theorem

Given a matroid $M = (E, \mathcal{I})$, fix any $I \in \mathcal{I}$ with |I| = k. Define:

- $E_I :=$ all independent sets J such that $I \subset J$ and |J| = k + 1.
- $\mathcal{B}_I :=$ all independent sets J such that $I \subset J$ and |J| = k + 2.

Equivalent: Contract for all $e \in I$, and then truncate to rank two.

In terms of polynomials: $(\prod_{e \in I} \partial_{x_e}) p_M \implies$ look at Hessian matrix.

Kaufman-Oppenheim '18, Anari-Liu-Oveis Gharan-Vinzant '19: If the second eigenvalue of the transition matrix of the local walk (previous slide) corresponding to I is small for every $I \in \mathcal{I}$, then the second eigenvalue of the transition matrix of the basis exchange walk is small.

Idea: Can "patch" the local walks together to hit all bases.

Note: Original result [KO '18] is for more general simplicial complexes.

Corollary: Matroid basis generating polynomial is CLC \implies small mixing time for the basis exchange walk.

Jonathan Leake (TU Berlin)

Main idea: Small second eigenvalue of transition matrix implies small mixing time for the random walk.

Kaufman-Oppenheim '18: "Local" second eigenvalues being small implies the "global" second eigenvalue is small.

Anari-Liu-Oveis Gharan-Vinzant '19: "Local" eigenvalues correspond precisely to eigenvalues of the Hessian of some derivatives applied to the "global" generating polynomial.

CLC property precisely captures this information.

In fact: Non-uniform sampling allowed as long as polynomial is CLC.

CLC implies matroid support. \implies This only works for matroids?

Actually: Second eigenvalue \leq 0 (Lorentz matrices) is stronger than what is actually needed to use the results of [KO '18].

Open question: Is there a theory of CLC-like polynomials where the second eigenvalue is at most some $\epsilon > 0$ (or $\frac{\epsilon}{n} > 0$, or $\frac{\epsilon}{d} > 0$, etc.)?

Outline

Connection to matroids

- Properties and examples of matroids
- Basis exchange graph
- Basis generating polynomials are CLC
- Lorentzian polynomials

2 Mason's strongest conjecture

- The independent set polynomial
- Independent set polynomials are CLC

3 Sampling bases of a matroid

- Sampling via random walks
- Mixing time via λ_2 (second largest eigenvalue)
- Local-to-global theorem for λ_2
- Basis sampling overview

Foreshadowing: Counting bases in the intersection of two matroids

Counting the intersection of two matroids

Fact: The intersection of the bases of two matroids is not itself a matroid. The generating polynomial is not CLC.

E.g.: Perfect matchings of a bipartite graph G on vertices $V_1 \sqcup V_2$ with edges E. Define matroids $M_i = (E, B_i)$ with $B_i :=$ choices of edges such that each $v \in V_i$ is incident on exactly one edge.

Therefore: Matroid intersection captures the permanent (#P-hard).

One way to count:

$$\langle p,q \rangle := \sum_{S} p_{S}q_{S} \implies \langle p_{M_{1}}, p_{M_{2}} \rangle = \#(\mathcal{B}_{1} \cap \mathcal{B}_{2})$$

We also have $\langle p,q \rangle = \prod_{i=1}^{n} (1 + \partial_{x_{i}}\partial_{z_{i}}) \Big|_{\mathbf{x}=\mathbf{z}=0} [p(\mathbf{x}) \cdot q(\mathbf{z})].$

Question: Can we bound approximate this inner product? Is there a connection to real stability preservers? Algorithmic implications?

Jonathan Leake (TU Berlin)

Applications of CLC Polynomials