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Definition. A matrix @ is said to be Lorentz if it is a Hermitian matrix in the close of the set of all
matrices with Lorentz signature (+, —, —, ..., —).

Definition. A polynomial p € Ry [x] is said to be indecomposable if there is no way to write p = f + g
where f,g # 0 depend on disjoint sets of variables.

Definition. A d-homogeneous polynomial p € R [x] is said to be completely log-concave if for all k € Z,
and all choices of vy,...,vy € R}, we have that
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is log-concave in the positive orthant. We also consider the zero polynomial to be completely log-concave.
Theorem. A d-homogeneous polynomial p € Ry [x] is completely log-concave if and only if:

1. For all p € ZI} such that |u| < d — 2, the polynomial Okp is indecomposable.

2. For all p € Z7 such that |p| = d — 2, the polynomial 04 p = x " Qx is such that Q is Lorentz.

Exercises

1. Given a matroid M = (E, B), define the basis generating polynomial via

pu(x) = Z z”,
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as was done in the course. The operations of deletion and contraction on M correspond to |;,—¢
(evaluation at 0) and 9,, on the corresponding polynomials. Describe the corresponding operations on
the underlying matroids, and prove that these operations do in fact transfrom M into another matroid.

2. Given a matroid M = (F,Z) with |E| = n, define the independent set generating polynomial via
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as was done in the course. Finish the proof that this polynomial is completely log-concave. Specifically,

(a) Describe the action of J,, and 9, in terms of the polynomials and the underlying matroids.

(b) Determine the relationship between 0, and matroid truncation, which removes all independent
sets of size large than some specified bound. Prove that this operation transforms M into another
matroid.



(c¢) Prove the indecomposability condition for py,.

(d) Compute the quadratic derivatives of py; and prove they are Lorentz.

3. Consider a slightly different version of the independent set generating function of the previous exercise:

Prove that this polynomial is completely log-concave, which should be easier than the previous exercise.
What sort of “Mason’s conjecture”-type result does this give? Also, can we replace n by r (the rank
of M) in this version of the polynomial?

4. Given convex compact sets K1, ..., K, in R? it turns out that
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is a d-homogeneous polynomial with non-negative coefficients, where Y " | x;K; denotes scaling (for
x; > 0) and Minkowski sum, and V(Kj;,, ..., K;,) is a symmetric multilinear function of convex compact
sets in R? called the mixed volume. A key property of the mixed volume are the Alexandrov-
Fenchel inequalities, which say that for any convex compact K, ..., Ky C R?, we have

V(K1, Ko, K3, ..., Kq) > \/V(Kl,Kl,K3, oy Kg) V(Ko Ko, K3, ..., Ky).
Use this property to show that pg () is completely log-concave.

5. Let M = (E,B) be a linear matroid (over R), given explicitly by the vectors vy, ..., v, € R%. Consider
the polynomial

| |
pa (@) ::det(M-diag(a:)-MT), where M := |vy vy -+ v,

and diag(x) is the diagonal matrix with & along the diagonal.
(a) Prove that pps(x) is a real stable multiaffine d-homogeneous polynomial with non-negative coef-
ficients whose support is B, the set of bases of the matroid M.
(b) Does this mean that the basis generating polynomial of every linear matroid over R is real stable?

(¢) Recall the way we proved that the spanning tree generating polynomial of a connected graph is
real stable by way of the Laplacian matrix. Prove that all graphic matroids are linear matroids.



