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Definition. A matrix Q is said to be Lorentz if it is a Hermitian matrix in the close of the set of all
matrices with Lorentz signature (+,−,−, . . . ,−).

Definition. A polynomial p ∈ R+[x] is said to be indecomposable if there is no way to write p = f + g
where f, g 6≡ 0 depend on disjoint sets of variables.

Definition. A d-homogeneous polynomial p ∈ R+[x] is said to be completely log-concave if for all k ∈ Z+

and all choices of v1, . . . ,vk ∈ Rn
+, we have that

∇v1 · · · ∇vkp =

 k∏
i=1

n∑
j=1

vij

 p

is log-concave in the positive orthant. We also consider the zero polynomial to be completely log-concave.

Theorem. A d-homogeneous polynomial p ∈ R+[x] is completely log-concave if and only if:

1. For all µ ∈ Zn
+ such that |µ| ≤ d− 2, the polynomial ∂µxp is indecomposable.

2. For all µ ∈ Zn
+ such that |µ| = d− 2, the polynomial ∂µxp = x>Qx is such that Q is Lorentz.

Exercises

1. Given a matroid M = (E,B), define the basis generating polynomial via

pM (x) :=
∑
B∈B

xB ,

as was done in the course. The operations of deletion and contraction on M correspond to |xi=0

(evaluation at 0) and ∂xi
on the corresponding polynomials. Describe the corresponding operations on

the underlying matroids, and prove that these operations do in fact transfrom M into another matroid.

2. Given a matroid M = (E, I) with |E| = n, define the independent set generating polynomial via

pM (x, y) :=
∑
I∈I

yn−|I|xI ,

as was done in the course. Finish the proof that this polynomial is completely log-concave. Specifically,

(a) Describe the action of ∂xi and ∂y in terms of the polynomials and the underlying matroids.

(b) Determine the relationship between ∂y and matroid truncation, which removes all independent
sets of size large than some specified bound. Prove that this operation transforms M into another
matroid.
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(c) Prove the indecomposability condition for pM .

(d) Compute the quadratic derivatives of pM and prove they are Lorentz.

3. Consider a slightly different version of the independent set generating function of the previous exercise:

pM (x, y) :=
∑
I∈I

yn−|I|

(n− |I|)!
xI .

Prove that this polynomial is completely log-concave, which should be easier than the previous exercise.
What sort of “Mason’s conjecture”-type result does this give? Also, can we replace n by r (the rank
of M) in this version of the polynomial?

4. Given convex compact sets K1, . . . ,Kn in Rd, it turns out that

pK(x) := vol

(
n∑

i=1

xiKi

)
=

n∑
i1,...,id=1

V (Ki1 , . . . ,Kid)

d∏
k=1

xik

is a d-homogeneous polynomial with non-negative coefficients, where
∑n

i=1 xiKi denotes scaling (for
xi > 0) and Minkowski sum, and V (Ki1 , . . . ,Kid) is a symmetric multilinear function of convex compact
sets in Rd called the mixed volume. A key property of the mixed volume are the Alexandrov-
Fenchel inequalities, which say that for any convex compact K1, . . . ,Kd ⊂ Rd, we have

V (K1,K2,K3, . . . ,Kd) ≥
√
V (K1,K1,K3, . . . ,Kd) · V (K2,K2,K3, . . . ,Kd).

Use this property to show that pK(x) is completely log-concave.

5. Let M = (E,B) be a linear matroid (over R), given explicitly by the vectors v1, . . . ,vn ∈ Rd. Consider
the polynomial

pM (x) := det
(
M · diag(x) ·M>

)
, where M :=

 | | |
v1 v2 · · · vn
| | |


and diag(x) is the diagonal matrix with x along the diagonal.

(a) Prove that pM (x) is a real stable multiaffine d-homogeneous polynomial with non-negative coef-
ficients whose support is B, the set of bases of the matroid M .

(b) Does this mean that the basis generating polynomial of every linear matroid over R is real stable?

(c) Recall the way we proved that the spanning tree generating polynomial of a connected graph is
real stable by way of the Laplacian matrix. Prove that all graphic matroids are linear matroids.
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