Linear Operator Lower Bounds via Capacity
 Polynomial Capacity: Theory, Applications, Generalizations

Jonathan Leake
Technische Universität Berlin

January 14th, 2020

Notation

Polynomial notation:

- $\mathbb{R}, \mathbb{R}_{+}, \mathbb{Z}_{+}:=$reals, non-negative reals, non-negative integers.
- $\boldsymbol{x}^{\mu}:=\prod_{i} x_{i}^{\mu_{i}}$ and $\boldsymbol{\mu} \leq \boldsymbol{\lambda}$ is entrywise.
- $\mathbb{R}[\boldsymbol{x}]:=$ v.s. of real polynomials in n variables.
- $\mathbb{R}_{+}[\boldsymbol{x}]:=$ v.s. of real polynomials with non-negative coefficients.
- $\mathbb{R}^{\boldsymbol{\lambda}}[\boldsymbol{x}]:=$ v.s. of polynomials of degree at most λ_{i} in x_{i}.
- For $p \in \mathbb{R}[\boldsymbol{x}]$, we write $p(\boldsymbol{x})=\sum_{\mu} p_{\mu} x^{\mu}$.
- For d-homogeneous $p \in \mathbb{R}[\boldsymbol{x}]$, we write $p(\boldsymbol{x})=\sum_{|\mu|=d} p_{\mu} \boldsymbol{x}^{\mu}$.
- $\frac{d}{d x}=\frac{\partial}{\partial x}=\partial_{x}:=$ derivative with respect to x, and $\partial_{x}^{\mu}:=\prod_{i} \partial_{x_{i}}^{\mu_{i}}$.
- $\operatorname{supp}(p)=$ support of $p=$ the set of $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$ for which $p_{\mu} \neq 0$.
- $\operatorname{Newt}(p)=$ Newton polytope of $p=$ convex hull of the support of p as a subset of \mathbb{R}^{n}.

Outline

(1) Motivation

- Capacity preserving linear operators
- Hopeful applications
- A unified approach
(2) Bilinear form bounds
- A special bilinear form for real stable polynomials
- Strong Rayleigh inequalities
- The bound for multiaffine polynomials
- The bound in full generality
(3) Capacity preserving linear operators

Outline

(1) Motivation

- Capacity preserving linear operators
- Hopeful applications
- A unified approach
(2) Bilinear form bounds
- A special bilinear form for real stable polynomials
- Strong Rayleigh inequalities
- The bound for multiaffine polynomials
- The bound in full generality
(3) Capacity preserving linear operators

Capacity preserving linear operators

Recall: $\operatorname{Cap}_{\alpha}(p):=\inf _{x>0} \frac{p(\boldsymbol{x})}{\boldsymbol{x}^{\alpha}}=\inf _{x_{1}, \ldots, x_{n}>0} \frac{p\left(x_{1}, \ldots, x_{n}\right)}{x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}}$.
Recall: For real stable $p \in \mathbb{R}_{+}^{\boldsymbol{\lambda}}[\boldsymbol{x}]$ and $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$, we have

$$
\frac{1}{\mu_{n}!} \operatorname{Cap}_{\left(\mu_{1}, \ldots, \mu_{n-1}\right)}\left(\left.\partial_{x_{n}}\right|_{x_{n}=0} p\right) \geq\binom{\lambda_{n}}{\mu_{n}} \frac{\mu_{n}^{\mu_{n}}\left(\lambda_{n}-\mu_{n}\right)^{\lambda_{n}-\mu_{n}}}{\lambda_{n}^{\lambda_{n}}} \operatorname{Cap}_{\mu}(p)
$$

Corollary: For real stable $p \in \mathbb{R}_{+}^{\lambda}[\boldsymbol{x}]$ and $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$, we have

$$
p_{\mu} \geq\left[\prod_{i=1}^{n}\binom{\lambda_{i}}{\mu_{i}} \frac{\mu_{i}^{\mu_{i}}\left(\lambda_{i}-\mu_{i}\right)^{\lambda_{i}-\mu_{i}}}{\lambda_{i}^{\lambda_{i}}}\right] \operatorname{Cap}_{\mu}(p)
$$

Another interpretation: The first bound is a statement about how much the operator $\left.\partial_{x_{n}}\right|_{x_{n}=0}$ can decrease the capacity of a polynomial.
$\left.\Longrightarrow " \partial_{x_{n}}\right|_{x_{n}=0}$ preserves capacity up to factor $\binom{\lambda_{n}}{\mu_{n}} \frac{\mu_{n}^{\mu_{n}}\left(\lambda_{n}-\mu_{n}\right)^{\lambda_{n}-\mu_{n}}}{\lambda_{n}^{\lambda_{n}}}$.
What other linear operators preserve capacity?

Hopeful application: Non-perfect matchings

Let G be a (a, b)-biregular (m, n)-bipartite graph $(a m=b n)$ and consider:

Bipartite adjacency matrix, A :

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

\# k-matchings $=k$-subpermanents
(a, b)-regular $\Longleftrightarrow(a, b)$-stochastic
We can associate a polynomial to G in the same way as before:

$$
p_{G}(\mathbf{x}):=\prod_{i=1}^{m} \sum_{j=1}^{n} A_{i j} x_{j}
$$

Question: What operator picks out k-matchings?

Hopeful application: Non-perfect matchings

For (a, b)-regular (m, n)-bipartite G with adjacency matrix A :

$$
p_{G}(\boldsymbol{x}):=\prod_{i=1}^{m} \sum_{j=1}^{n} A_{i j} x_{j}
$$

$\#$ perfect matchings $=$ permanent $=\left.\partial_{x}^{[n]}\right|_{x=0} p_{G}$
$\# k$-matchings $=$ sum of k-subpermanents $\left.\approx \sum_{S \in\binom{[n]}{k}} \partial_{x}^{S}\right|_{x=1} p_{G}$
Evaluation at $\mathbf{1}$ instead of $\mathbf{0}$: requires regularity of the graph.

$$
\left.\sum_{S \in\binom{[n]}{k}} \partial_{x}^{S}\right|_{x=1} p_{G}=\mu_{k}(G) \cdot a^{m-k} \quad(a \text { is the row sum })
$$

Why? $\sum_{S} \partial_{x}^{S} p_{G}$ is $(m-k)$-homogeneous, so evaluation at $\mathbf{0}$ is no good.
Problem: The operator $\left.\sum_{S \in\binom{[n]}{k}} \partial_{\boldsymbol{x}}^{S}\right|_{\boldsymbol{x}=\mathbf{1}}$ does not pick out a coefficient, and there is no clear way to induct like with the coefficient bounds.

Hopeful application: Intersection of two matroids

Recall: A matroid M on a ground set E can be defined as a non-empty collection \mathcal{B} of size- d subsets of E called bases of M, which satisfy:

- Exchange axiom: For all $B_{1}, B_{2} \in \mathcal{B}$ and $e \in B_{1} \backslash B_{2}$, there exists $f \in B_{2} \backslash B_{1}$ such that $B_{1} \cup\{f\} \backslash\{e\} \in \mathcal{B}$.
E.g.: Linear bases in a collection of vectors, spanning trees of a graph.

Recall: For any matroid, the basis-generating polynomial is Lorentzian:

$$
p_{M}(\boldsymbol{x}):=\sum_{B \in \mathcal{B}} \boldsymbol{x}^{B}=\sum_{B \in \mathcal{B}} \prod_{e \in B} x_{e} \in \mathbb{R}_{+}^{1}[\boldsymbol{x}] .
$$

Matroid intersection problem: Given matroids M_{1}, M_{2} on the same ground set E, count or approximate $\left|\mathcal{B}_{1} \cap \mathcal{B}_{2}\right|$.

Problem: Not clear how to induct, and not clear how this could be interpreted as a coefficient of something.
Hint: Something like a sum of coefficients (the matchings case too).

A unified approach

The two previous examples are both weighted sums of coefficients.
How to unify? First idea: Inner product of polynomials:

$$
\langle p, q\rangle=\sum_{\mu} c_{\mu} p_{\mu} q_{\mu}
$$

- Works well for the matroid intersection case: just plug in the matroid-generating polynomials with $c_{\mu}=1$.
- Non-perfect matchings case is not as clear, but perhaps plugging in something like $\sum_{S \in\binom{[n]}{k}} \boldsymbol{x}^{S}$ should work with c_{μ} some factorials? This is the elementary symmetric polynomial, which is real stable.

There is a bilinear form we discussed at the beginning of the course which plays very nicely with log-concave polynomials.

Problem: Not quite an inner product. But maybe it's close enough?

Outline

(1) Motivation

- Capacity preserving linear operators
- Hopeful applications
- A unified approach
(2) Bilinear form bounds
- A special bilinear form for real stable polynomials
- Strong Rayleigh inequalities
- The bound for multiaffine polynomials
- The bound in full generality
(3) Capacity preserving linear operators

A bilinear form for real stable polynomials

Given real stable polynomials $p, q \in \mathbb{R}^{\lambda}[\boldsymbol{x}]$, define:

$$
\langle p, q\rangle_{\boldsymbol{\lambda}}:=\sum_{0 \leq \mu \leq \boldsymbol{\lambda}}\binom{\boldsymbol{\lambda}}{\boldsymbol{\mu}}^{-1} p_{\mu} q_{\lambda-\mu}
$$

Note: Use of $\langle\cdot, \cdot\rangle_{\boldsymbol{\lambda}}$ should give the intuition of an inner product, but really it is something like a "twisted" inner product.

Why this? Recall: This bilinear form is associated to the Borcea-Brändén symbol of a linear operator. (We will come back to this.)
For multiaffine $p, q \in \mathbb{R}^{\mathbf{1}}[\boldsymbol{x}]$, we have:

$$
\langle p, q\rangle_{\mathbf{1}}:=\sum_{\mathbf{0 \leq \mu \leq 1}} p_{\mu} q_{1-\mu}=\left[\left.\prod_{i=1}^{n}\left(\partial_{x_{i}}+\partial_{z_{i}}\right)\right|_{x_{i}=z_{i}=0}\right] p(\boldsymbol{x}) q(\mathbf{z})
$$

Goal: Lower bound on this bilinear form in terms of the capacity of p, q.
Idea for multiaffine: Product $p(\boldsymbol{x}) q(\boldsymbol{z})$ is real stable, $\left.\left(\partial_{x_{i}}+\partial_{z_{i}}\right)\right|_{x_{i}=z_{i}=0}$ preserves real stability, proof goes by induction. (Standard stuff.)

The base case for multiaffine

For multiaffine $p, q \in \mathbb{R}_{+}^{\mathbf{1}}[\boldsymbol{x}]$, we have:

$$
\langle p, q\rangle_{\mathbf{1}}:=\sum_{0 \leq \boldsymbol{\mu} \leq \mathbf{1}} p_{\mu} q_{1-\mu}=\left[\left.\prod_{i=1}^{n}\left(\partial_{x_{i}}+\partial_{z_{i}}\right)\right|_{x_{i}=z_{i}=0}\right] p(\boldsymbol{x}) q(\mathbf{z}) .
$$

What does the base case look like?

$$
\left[\left.\prod_{i=1}^{n-1}\left(\partial_{x_{i}}+\partial_{z_{i}}\right)\right|_{x_{i}=z_{i}=0}\right] p(\boldsymbol{x}) q(z)=a x_{n} z_{n}+b x_{n}+c z_{n}+d \in \mathbb{R}_{+}^{(1,1)}\left[x_{n}, z_{n}\right] .
$$

Base case: Given $p(x, z)=a x z+b x+c z+d \in \mathbb{R}_{+}^{(1,1)}[x, z]$ and $\alpha \in[0,1]$, we want a bound like

$$
b+c=\left.\left(\partial_{x}+\partial_{z}\right)\right|_{x=z=0} p \geq K(\alpha) \cdot \operatorname{Cap}_{(\alpha, 1-\alpha)}(p)
$$

Questions: How does log-concavity (or something related to real stability) come into play? Why α and $1-\alpha$ here?

The strong Rayleigh inequalities

Strong Rayleigh inequalities [Brändén '07]: For real stable $p \in \mathbb{R}^{\mathbf{1}}[\boldsymbol{x}]$,

$$
\partial_{x_{i}} p(\boldsymbol{x}) \cdot \partial_{x_{j}} p(\boldsymbol{x})-p(\boldsymbol{x}) \cdot \partial_{x_{i}} \partial_{x_{j}} p(\boldsymbol{x}) \geq 0 \quad \text { for all } \boldsymbol{x} \in \mathbb{R}^{d}
$$

Converse: This condition for all i, j is equivalent to real stability in $\mathbb{R}^{\mathbf{1}}[\boldsymbol{x}]$.
What about our base case? For $p(x, z)=a x z+b x+c z+d$, we have
$\partial_{x} p \cdot \partial_{z} p-p \cdot \partial_{x} \partial_{z} p=(a z+b)(a x+c)-a(a x z+b x+c z+d)=b c-a d$.
Corollary: $a x z+b x+c z+d$ is real stable iff $b c \geq a d$.
This is analogous to the discriminant condition for univariate quadratics.
In fact: Polarize $f(x)=a x^{2}+2 b x+c$ to get $p(x, z)=a x z+b x+b z+c$, for which: p is real stable iff $b^{2} \geq a c$ iff f is real-rooted.

Recall: Polarization is the unique mutliaffine symmetric polynomial p in $d=2$ variables which diagonalizes to f.

Strong Rayleigh and capacity: The separation trick

Previous slide: $a x z+b x+c z+d$ is real stable iff $b c \geq a d$.
How to use this for capacity? We use the following separation trick:

$$
\begin{aligned}
\inf _{x, z>0} \frac{a x z+b x+c z+d}{x^{\alpha} z^{1-\alpha}} & \leq \inf _{x, z>0} \frac{a x z+b x+c z+\frac{b c}{a}}{x^{\alpha} z^{1-\alpha}} \\
& =\inf _{x, z>0} \frac{(a z+b)\left(x+\frac{c}{a}\right)}{x^{\alpha} z^{1-\alpha}}
\end{aligned}
$$

Separate via $\inf _{x, z>0} \frac{(a z+b)\left(x+\frac{c}{a}\right)}{x^{\alpha} z^{1-\alpha}}=\operatorname{Cap}_{1-\alpha}(a z+b) \cdot \operatorname{Cap}_{\alpha}\left(x+\frac{c}{a}\right)$.
Calculus: For any $r, s>0$, we have $\operatorname{Cap}_{\alpha}(r x+s)=\frac{r^{\alpha} s^{1-\alpha}}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}}$. So:

$$
\begin{aligned}
\operatorname{Cap}_{1-\alpha}(a z+b) \cdot \operatorname{Cap}_{\alpha}\left(x+\frac{c}{a}\right) & =\frac{a^{1-\alpha} b^{\alpha}}{(1-\alpha)^{1-\alpha} \alpha^{\alpha}} \cdot \frac{1^{\alpha}\left(\frac{c}{a}\right)^{1-\alpha}}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}} \\
& =\frac{1}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}} \cdot \operatorname{Cap}_{\alpha}(b x+c)
\end{aligned}
$$

Finally: $\operatorname{Cap}_{\alpha}(b x+c)=\inf _{x>0} \frac{b x+c}{x^{\alpha}} \leq \frac{b \cdot 1+c}{1^{\alpha}}=b+c$.

Putting it all together (the base case)

Last slide: For real stable $p(x, z)=a x z+b x+c z+d$ and $\alpha \in[0,1]$,
(1) $\operatorname{Cap}_{(\alpha, 1-\alpha)}(p) \leq \operatorname{Cap}_{1-\alpha}(a z+b) \cdot \operatorname{Cap}_{\alpha}\left(x+\frac{c}{a}\right)$
(2) $\operatorname{Cap}_{1-\alpha}(a z+b) \cdot \operatorname{Cap}_{\alpha}\left(x+\frac{c}{a}\right)=\frac{1}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}} \cdot \operatorname{Cap}_{\alpha}(b x+c)$
(3) $\mathrm{Cap}_{\alpha}(b x+c) \leq b+c$

Combine: $\left.\left(\partial_{x}+\partial_{z}\right) p\right|_{x=z=0}=b+c \geq \alpha^{\alpha}(1-\alpha)^{1-\alpha} \cdot \operatorname{Cap}_{(\alpha, 1-\alpha)}(p)$.

Lemma (Base case, Anari-Oveis Gharan '17)

Given a real stable polynomial $p \in \mathbb{R}_{+}^{(1,1)}[x, z]$ and any $\alpha \in[0,1]$, we have

$$
\left.\left(\partial_{x}+\partial_{z}\right) p\right|_{x=z=0} \geq \alpha^{\alpha}(1-\alpha)^{1-\alpha} \cdot \operatorname{Cap}_{(\alpha, 1-\alpha)}(p)
$$

Additionally, this bound is tight for any fixed $\alpha \in[0,1]$.

The bound for multiaffine polynomials in general

Lemma: $\left.\left(\partial_{x}+\partial_{z}\right) p\right|_{x=z=0} \geq \alpha^{\alpha}(1-\alpha)^{1-\alpha} \cdot \operatorname{Cap}_{(\alpha, 1-\alpha)}(p)$.

Theorem (Mutliaffine bound, Anari-Oveis Gharan '17)

Given real stable polynomials $p, q \in \mathbb{R}_{+}^{1}[\boldsymbol{x}]$ and any $\boldsymbol{\alpha} \in[0,1]^{n}$, we have

$$
\langle p, q\rangle_{\mathbf{1}} \geq\left[\prod_{i=1}^{n} \alpha_{i}^{\alpha_{i}}\left(1-\alpha_{i}\right)^{1-\alpha_{i}}\right] \cdot \operatorname{Cap}_{\alpha}(p) \cdot \operatorname{Cap}_{1-\alpha}(q)
$$

Additionally, this bound is tight for any fixed $\boldsymbol{\alpha} \in[0,1]^{n}$.

Proof strategy: Induction with partial evaluation, per usual.
Want: For real stable $f(\boldsymbol{x}, \boldsymbol{z}) \in \mathbb{R}_{+}^{(\mathbf{1}, \mathbf{1})}[\boldsymbol{x}, \boldsymbol{z}]$ (think $f(\boldsymbol{x}, \boldsymbol{z})=p(\boldsymbol{x}) q(\boldsymbol{z})$),

$$
\left[\left.\prod_{i=1}^{n}\left(\partial_{x_{i}}+\partial_{z_{i}}\right)\right|_{x_{i}=z_{i}=0}\right] f(\boldsymbol{x}, \boldsymbol{z}) \geq\left[\prod_{i=1}^{n} \alpha_{i}^{\alpha_{i}}\left(1-\alpha_{i}\right)^{1-\alpha_{i}}\right] \cdot \operatorname{Cap}_{(\alpha, 1-\alpha)}(f)
$$

Proof of the multiaffine bound

To prove: For real stable $f(\boldsymbol{x}, \boldsymbol{z}) \in \mathbb{R}_{+}^{(\mathbf{1}, \mathbf{1})}\left[x_{1}, \ldots, x_{n}, z_{1}, \ldots, z_{n}\right]$,

$$
\left[\left.\prod_{i=1}^{n}\left(\partial_{x_{i}}+\partial_{z_{i}}\right)\right|_{x_{i}=z_{i}=0}\right] f(\boldsymbol{x}, \boldsymbol{z}) \geq\left[\prod_{i=1}^{n} \alpha_{i}^{\alpha_{i}}\left(1-\alpha_{i}\right)^{1-\alpha_{i}}\right] \cdot \operatorname{Cap}_{(\alpha, 1-\alpha)}(f)
$$

Define $D_{i}:=\left.\left(\partial_{x_{i}}+\partial_{z_{i}}\right)\right|_{x_{i}=z_{i}=0}$ and $C_{i}:=\alpha_{i}^{\alpha_{i}}\left(1-\alpha_{i}\right)^{1-\alpha_{i}}$.
Induction on n : For $\beta:=\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$, apply bound to $D_{n} f$:

$$
\left(\prod_{i=1}^{n-1} D_{i}\right) D_{n} f \geq\left(\prod_{i=1}^{n-1} C_{i}\right) \cdot \operatorname{Cap}_{(\beta, 1-\beta)}\left(D_{n} f\right)
$$

Next: $\left[\left(\prod_{i=1}^{n-1} D_{i}\right) f\right]\left(x_{n}, z_{n}\right)$ is real stable since D_{i} preserves stability.
Also: For fixed $\boldsymbol{x}^{\prime}:=\left(x_{1}, \ldots, x_{n-1}\right)>0$ and $\boldsymbol{z}^{\prime}:=\left(z_{1}, \ldots, z_{n-1}\right)>0$, we have that $f\left(\boldsymbol{x}^{\prime}, x_{n}, \boldsymbol{z}^{\prime}, z_{n}\right) \in \mathbb{R}_{+}\left[x_{n}, z_{n}\right]$ is real stable, and base case gives

$$
D_{n}\left[f\left(\boldsymbol{x}^{\prime}, x_{n}, \boldsymbol{z}^{\prime}, z_{n}\right)\right] \geq C_{n} \cdot \operatorname{Cap}_{\left(\alpha_{n}, 1-\alpha_{n}\right)}\left(f\left(\boldsymbol{x}^{\prime}, x_{n}, \boldsymbol{z}^{\prime}, z_{n}\right)\right)
$$

Putting it all together (the general multiaffine case)

Given real stable $f(\boldsymbol{x}, \boldsymbol{z}) \in \mathbb{R}_{+}^{(\mathbf{1}, \mathbf{1})}[\boldsymbol{x}, \boldsymbol{z}]$ and $\boldsymbol{\alpha} \in[0,1]^{n}$, we have
(1) Induction: $\left(\prod_{i=1}^{n-1} D_{i}\right) D_{n} f \geq\left(\prod_{i=1}^{n-1} C_{i}\right) \cdot \operatorname{Cap}_{(\beta, 1-\beta)}\left(D_{n} f\right)$
(2) Final step: $D_{n} f\left(\boldsymbol{x}^{\prime}, \boldsymbol{z}^{\prime}\right) \geq C_{n} \cdot \operatorname{Cap}_{\left(\alpha_{n}, 1-\alpha_{n}\right)}\left(f\left(\boldsymbol{x}^{\prime}, x_{n}, \boldsymbol{z}^{\prime}, z_{n}\right)\right)$

Now combine (recall $\boldsymbol{\beta}=\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$):

$$
\begin{aligned}
\left(\prod_{i=1}^{n} D_{i}\right) f & \geq\left(\prod_{i=1}^{n-1} C_{i}\right) \cdot \inf _{\boldsymbol{x}^{\prime}, \boldsymbol{z}^{\prime}>0} \frac{D_{n} f\left(\boldsymbol{x}^{\prime}, \boldsymbol{z}^{\prime}\right)}{\left(\boldsymbol{x}^{\prime}\right)^{\beta}\left(\boldsymbol{z}^{\prime}\right)^{1-\beta}} \\
& \geq\left(\prod_{i=1}^{n} C_{i}\right) \cdot \inf _{\boldsymbol{x}^{\prime}, \boldsymbol{z}^{\prime}>0} \frac{\inf _{x_{n}, z_{n}>0} \frac{f\left(\boldsymbol{x}^{\prime}, x_{n}, \boldsymbol{z}^{\prime}, z_{n}\right)}{x_{n}^{n} z_{n}^{1-\alpha}}}{\left(\boldsymbol{x}^{\prime}\right)^{\beta}\left(\boldsymbol{z}^{\prime}\right)^{\mathbf{1}-\boldsymbol{\beta}}} \\
& =\left(\prod_{i=1}^{n} C_{i}\right) \cdot \inf _{\boldsymbol{x}, \boldsymbol{z}>0} \frac{f(\boldsymbol{x}, \boldsymbol{z})}{\boldsymbol{x}^{\alpha} \boldsymbol{z}^{\mathbf{1}-\boldsymbol{\alpha}}}=\left(\prod_{i=1}^{n} C_{i}\right) \cdot \operatorname{Cap}_{(\alpha, \mathbf{1}-\alpha)}(f)
\end{aligned}
$$

Thus: $f=p(\boldsymbol{x}) q(\boldsymbol{z})$ gives $\langle p, q\rangle_{\mathbf{1}} \geq \boldsymbol{\alpha}^{\alpha}(\mathbf{1}-\boldsymbol{\alpha})^{\mathbf{1}-\alpha} \cdot \operatorname{Cap}_{\boldsymbol{\alpha}}(p) \cdot \operatorname{Cap}_{\mathbf{1 - \alpha}}(q)$.

The bound in full generality

Theorem: $\langle p, q\rangle_{\mathbf{1}} \geq \boldsymbol{\alpha}^{\alpha}(\mathbf{1}-\boldsymbol{\alpha})^{1-\alpha} \cdot \operatorname{Cap}_{\alpha}(p) \cdot \operatorname{Cap}_{1-\alpha}(q)$.

Theorem (Gurvits-L '18)

Given real stable polynomials $p, q \in \mathbb{R}_{+}^{\lambda}[\boldsymbol{x}]$ and any $\boldsymbol{\alpha} \in \mathbb{R}_{+}^{n}$, we have

$$
\langle p, q\rangle_{\lambda} \geq\left[\prod_{i=1}^{n} \frac{\alpha_{i}^{\alpha_{i}}\left(\lambda_{i}-\alpha_{i}\right)^{\lambda_{i}-\alpha_{i}}}{\lambda_{i}^{\lambda_{i}}}\right] \cdot \operatorname{Cap}_{\alpha}(p) \cdot \operatorname{Cap}_{\lambda-\alpha}(q)
$$

Additionally, this bound is tight for any fixed $\boldsymbol{\alpha} \in \mathbb{R}_{+}^{n}$.
Proof strategy: Polarization preserves real stability and capacity.
Degree-agnostic version: For real stable $p, \boldsymbol{q} \in \mathbb{R}_{+}[\boldsymbol{x}]$ and any $\boldsymbol{\alpha} \in \mathbb{R}_{+}^{n}$,

$$
\langle p, q\rangle_{\infty}:=\left.p\left(\partial_{\boldsymbol{x}}\right) q(\boldsymbol{x})\right|_{\boldsymbol{x}=\mathbf{0}} \geq \boldsymbol{\alpha}^{\alpha} e^{-\alpha} \cdot \operatorname{Cap}_{\alpha}(p) \cdot \operatorname{Cap}_{\alpha}(q)
$$

Note: The inner product $\langle p, q\rangle_{\infty}$ is an actual inner product. The above theorem can also be "untwisted" by mapping $q \mapsto \boldsymbol{x}^{\boldsymbol{\lambda}} \cdot q\left(x_{1}^{-1}, \ldots, x_{n}^{-1}\right)$.

Outline

(1) Motivation

- Capacity preserving linear operators
- Hopeful applications
- A unified approach
(2) Bilinear form bounds
- A special bilinear form for real stable polynomials
- Strong Rayleigh inequalities
- The bound for multiaffine polynomials
- The bound in full generality
(3) Capacity preserving linear operators

From the bilinear form to linear operators

Recall: The symbol of an operator $T: \mathbb{R}^{\lambda}[[\boldsymbol{x}] \rightarrow \mathbb{R}[\boldsymbol{x}]$:

$$
\operatorname{Symb}^{\boldsymbol{\lambda}}[T](\boldsymbol{x}, \boldsymbol{y}):=T\left[\prod_{i=1}^{n}\left(x_{i}+y_{i}\right)^{\lambda_{i}}\right]=\sum_{0 \leq \boldsymbol{\mu} \leq \boldsymbol{\lambda}}\binom{\boldsymbol{\lambda}}{\boldsymbol{\mu}} \boldsymbol{y}^{\boldsymbol{\lambda}-\boldsymbol{\mu}} T\left[\boldsymbol{x}^{\mu}\right] .
$$

Here T acts only on the \boldsymbol{x} variables.
Recall: Morally, T preserves real stability iff $S_{y m b}{ }^{\lambda}[T]$ is real stable.
How was this proven? We used $\langle\cdot, \cdot\rangle_{\boldsymbol{\lambda}}$ via the fact that

$$
T[p](\boldsymbol{x})=\left\langle\operatorname{Symb}^{\lambda}[T](\boldsymbol{x}, \boldsymbol{y}), p(\boldsymbol{y})\right\rangle_{\lambda}
$$

where $\langle\cdot, \cdot\rangle_{\boldsymbol{\lambda}}$ acts on the \boldsymbol{y} variables.
Question: Can we use this to prove capacity bounds for linear operators? In particular, this will help with the non-perfect matchings application.

Capacity bounds for linear operators

Last slide:

$$
T[p](\boldsymbol{x})=\left\langle\operatorname{Symb}^{\lambda}[T](\boldsymbol{x}, \boldsymbol{y}), p(\boldsymbol{y})\right\rangle_{\lambda}
$$

If Symb ${ }^{\lambda}[T]$ is real stable, then for any $\boldsymbol{\alpha}>0$ and any fixed $\boldsymbol{x}>0$ we have

$$
\begin{aligned}
T[p](\boldsymbol{x}) & =\left\langle\operatorname{Symb}^{\boldsymbol{\lambda}}[T](\boldsymbol{x}, \boldsymbol{y}), p(\boldsymbol{y})\right\rangle_{\boldsymbol{\lambda}} \\
& \geq \frac{\boldsymbol{\alpha}^{\alpha}(\boldsymbol{\lambda}-\boldsymbol{\alpha})^{\boldsymbol{\lambda}-\boldsymbol{\alpha}}}{\boldsymbol{\lambda}^{\boldsymbol{\lambda}}} \cdot \operatorname{Cap}_{\alpha}(p) \cdot \operatorname{Cap}_{\boldsymbol{\lambda}-\boldsymbol{\alpha}}\left(\operatorname{Symb}^{\boldsymbol{\lambda}}[T](\boldsymbol{x}, \cdot)\right)
\end{aligned}
$$

For any $\boldsymbol{\beta}>0$, divide by \boldsymbol{x}^{β} and take inf:

$$
\inf _{x>0} \frac{T[p](\boldsymbol{x})}{\boldsymbol{x}^{\beta}} \geq \frac{\boldsymbol{\alpha}^{\alpha}(\boldsymbol{\lambda}-\boldsymbol{\alpha})^{\boldsymbol{\lambda}-\boldsymbol{\alpha}}}{\boldsymbol{\lambda}^{\boldsymbol{\lambda}}} \cdot \operatorname{Cap}_{\alpha}(p) \cdot \inf _{\boldsymbol{x}>0} \frac{\operatorname{Cap}_{\boldsymbol{\lambda}-\boldsymbol{\alpha}}\left(\operatorname{Symb}^{\boldsymbol{\lambda}}[T](\boldsymbol{x}, \cdot)\right)}{\boldsymbol{x}^{\beta}}
$$

Theorem [Gurvits-L '18]:
If p and $\operatorname{Symb}^{\lambda}[T]$ are real stable, then for any $\boldsymbol{\alpha}, \boldsymbol{\beta}>0$ we have

$$
\frac{\operatorname{Cap}_{\boldsymbol{\beta}}(T[p])}{\operatorname{Cap}_{\alpha}(p)} \geq \frac{\boldsymbol{\alpha}^{\alpha}(\boldsymbol{\lambda}-\boldsymbol{\alpha})^{\boldsymbol{\lambda}-\boldsymbol{\alpha}}}{\lambda^{\boldsymbol{\lambda}}} \operatorname{Cap}_{(\boldsymbol{\beta}, \boldsymbol{\lambda}-\alpha)}\left(\operatorname{Symb}^{\lambda}[T]\right)
$$

