
Linear Operator Lower Bounds via Capacity
Polynomial Capacity: Theory, Applications, Generalizations

Jonathan Leake

Technische Universität Berlin

January 14th, 2020

Jonathan Leake (TU Berlin) Linear Operator Bounds Winter 2020-2021 1 / 22



Notation

Polynomial notation:
R,R+,Z+ := reals, non-negative reals, non-negative integers.
xµ :=

∏
i xµi

i and µ ≤ λ is entrywise.
R[x] := v.s. of real polynomials in n variables.
R+[x] := v.s. of real polynomials with non-negative coefficients.
Rλ[x] := v.s. of polynomials of degree at most λi in xi .
For p ∈ R[x], we write p(x) =

∑
µ pµxµ.

For d-homogeneous p ∈ R[x], we write p(x) =
∑
|µ|=d pµxµ.

d
dx = ∂

∂x = ∂x := derivative with respect to x , and ∂µ
x :=

∏
i ∂

µixi .
supp(p) = support of p = the set of µ ∈ Zn

+ for which pµ 6= 0.
Newt(p) = Newton polytope of p = convex hull of the support of p
as a subset of Rn.
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Capacity preserving linear operators

Recall: Capα(p) := inf
x>0

p(x)
xα

= inf
x1,...,xn>0

p(x1, . . . , xn)
xα1

1 · · · x
αnn

.

Recall: For real stable p ∈ Rλ
+[x] and µ ∈ Zn

+, we have

1
µn! Cap(µ1,...,µn−1)

(
∂xn |xn=0 p

)
≥
(
λn
µn

)
µµn

n (λn − µn)λn−µn

λλnn
Capµ(p).

Corollary: For real stable p ∈ Rλ
+[x] and µ ∈ Zn

+, we have

pµ ≥
[ n∏

i=1

(
λi
µi

)
µµi

i (λi − µi )λi−µi

λλi
i

]
Capµ(p).

Another interpretation: The first bound is a statement about how much
the operator ∂xn |xn=0 can decrease the capacity of a polynomial.

=⇒ “∂xn |xn=0 preserves capacity up to factor
(λn
µn

)µµn
n (λn−µn)λn−µn

λλn
n

”.

What other linear operators preserve capacity?
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Hopeful application: Non-perfect matchings
Let G be a (a, b)-biregular (m, n)-bipartite graph (am = bn) and consider:

Bipartite adjacency matrix, A:
1 0 0 1 1 0
1 1 1 0 0 0
0 1 0 0 1 1
0 0 1 1 0 1


# k-matchings = k-subpermanents
(a, b)-regular ⇐⇒ (a, b)-stochastic

We can associate a polynomial to G in the same way as before:

pG(x) :=
m∏

i=1

n∑
j=1

Aijxj

Question: What operator picks out k-matchings?
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Hopeful application: Non-perfect matchings
For (a, b)-regular (m, n)-bipartite G with adjacency matrix A:

pG(x) :=
m∏

i=1

n∑
j=1

Aijxj

# perfect matchings = permanent = ∂
[n]
x
∣∣∣
x=0

pG

# k-matchings = sum of k-subpermanents ≈
∑

S∈([n]
k ) ∂

S
x

∣∣∣
x=1

pG

Evaluation at 1 instead of 0: requires regularity of the graph.∑
S∈([n]

k )
∂S

x

∣∣∣
x=1

pG = µk(G) · am−k (a is the row sum)

Why?
∑

S ∂
S
x pG is (m − k)-homogeneous, so evaluation at 0 is no good.

Problem: The operator
∑

S∈([n]
k ) ∂

S
x

∣∣∣
x=1

does not pick out a coefficient,
and there is no clear way to induct like with the coefficient bounds.
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Hopeful application: Intersection of two matroids
Recall: A matroid M on a ground set E can be defined as a non-empty
collection B of size-d subsets of E called bases of M, which satisfy:

Exchange axiom: For all B1,B2 ∈ B and e ∈ B1 \ B2, there exists
f ∈ B2 \ B1 such that B1 ∪ {f } \ {e} ∈ B.

E.g.: Linear bases in a collection of vectors, spanning trees of a graph.

Recall: For any matroid, the basis-generating polynomial is Lorentzian:

pM(x) :=
∑
B∈B

xB =
∑
B∈B

∏
e∈B

xe ∈ R1
+[x].

Matroid intersection problem: Given matroids M1,M2 on the same
ground set E , count or approximate |B1 ∩ B2|.

Problem: Not clear how to induct, and not clear how this could be
interpreted as a coefficient of something.

Hint: Something like a sum of coefficients (the matchings case too).
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A unified approach

The two previous examples are both weighted sums of coefficients.

How to unify? First idea: Inner product of polynomials:

〈p, q〉 =
∑
µ

cµpµqµ

Works well for the matroid intersection case: just plug in the
matroid-generating polynomials with cµ = 1.
Non-perfect matchings case is not as clear, but perhaps plugging in
something like

∑
S∈([n]

k ) xS should work with cµ some factorials? This
is the elementary symmetric polynomial, which is real stable.

There is a bilinear form we discussed at the beginning of the course
which plays very nicely with log-concave polynomials.

Problem: Not quite an inner product. But maybe it’s close enough?
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A bilinear form for real stable polynomials
Given real stable polynomials p, q ∈ Rλ[x], define:

〈p, q〉λ :=
∑

0≤µ≤λ

(
λ

µ

)−1

pµqλ−µ.

Note: Use of 〈·, ·〉λ should give the intuition of an inner product, but
really it is something like a “twisted” inner product.

Why this? Recall: This bilinear form is associated to the Borcea-Brändén
symbol of a linear operator. (We will come back to this.)

For multiaffine p, q ∈ R1[x], we have:

〈p, q〉1 :=
∑

0≤µ≤1
pµq1−µ =

[ n∏
i=1

(∂xi + ∂zi )
∣∣∣
xi =zi =0

]
p(x)q(z).

Goal: Lower bound on this bilinear form in terms of the capacity of p, q.

Idea for multiaffine: Product p(x)q(z) is real stable, (∂xi + ∂zi )
∣∣
xi =zi =0

preserves real stability, proof goes by induction. (Standard stuff.)
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The base case for multiaffine
For multiaffine p, q ∈ R1

+[x], we have:

〈p, q〉1 :=
∑

0≤µ≤1
pµq1−µ =

[ n∏
i=1

(∂xi + ∂zi )
∣∣∣
xi =zi =0

]
p(x)q(z).

What does the base case look like?[n−1∏
i=1

(∂xi + ∂zi )
∣∣∣
xi =zi =0

]
p(x)q(z) = axnzn + bxn + czn + d ∈ R(1,1)

+ [xn, zn].

Base case: Given p(x , z) = axz + bx + cz + d ∈ R(1,1)
+ [x , z ] and

α ∈ [0, 1], we want a bound like

b + c = (∂x + ∂z)
∣∣∣
x=z=0

p ≥ K (α) · Cap(α,1−α)(p).

Questions: How does log-concavity (or something related to real stability)
come into play? Why α and 1− α here?
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The strong Rayleigh inequalities
Strong Rayleigh inequalities [Brändén ’07]: For real stable p ∈ R1[x],

∂xi p(x) · ∂xj p(x)− p(x) · ∂xi∂xj p(x) ≥ 0 for all x ∈ Rd .

Converse: This condition for all i , j is equivalent to real stability in R1[x].

What about our base case? For p(x , z) = axz + bx + cz + d , we have

∂x p ·∂zp−p ·∂x∂zp = (az + b)(ax + c)− a(axz + bx + cz + d) = bc − ad .

Corollary: axz + bx + cz + d is real stable iff bc ≥ ad .

This is analogous to the discriminant condition for univariate quadratics.

In fact: Polarize f (x) = ax2 + 2bx + c to get p(x , z) = axz + bx + bz + c,
for which: p is real stable iff b2 ≥ ac iff f is real-rooted.

Recall: Polarization is the unique mutliaffine symmetric polynomial p in
d = 2 variables which diagonalizes to f .
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Strong Rayleigh and capacity: The separation trick
Previous slide: axz + bx + cz + d is real stable iff bc ≥ ad .

How to use this for capacity? We use the following separation trick:

inf
x ,z>0

axz + bx + cz + d
xαz1−α ≤ inf

x ,z>0

axz + bx + cz + bc
a

xαz1−α

= inf
x ,z>0

(az + b)(x + c
a )

xαz1−α

Separate via infx ,z>0
(az+b)(x+ c

a )
xαz1−α = Cap1−α(az + b) · Capα(x + c

a ).

Calculus: For any r , s > 0, we have Capα(rx + s) = rαs1−α

αα(1−α)1−α . So:

Cap1−α(az + b) · Capα(x + c
a ) = a1−αbα

(1− α)1−ααα
·

1α( c
a )1−α

αα(1− α)1−α

= 1
αα(1− α)1−α · Capα(bx + c).

Finally: Capα(bx + c) = infx>0
bx+c

xα ≤ b·1+c
1α = b + c.
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Putting it all together (the base case)

Last slide: For real stable p(x , z) = axz + bx + cz + d and α ∈ [0, 1],
1 Cap(α,1−α)(p) ≤ Cap1−α(az + b) · Capα(x + c

a )
2 Cap1−α(az + b) · Capα(x + c

a ) = 1
αα(1−α)1−α · Capα(bx + c)

3 Capα(bx + c) ≤ b + c

Combine: (∂x + ∂z)p
∣∣∣
x=z=0

= b + c ≥ αα(1− α)1−α · Cap(α,1−α)(p).

Lemma (Base case, Anari-Oveis Gharan ’17)

Given a real stable polynomial p ∈ R(1,1)
+ [x , z ] and any α ∈ [0, 1], we have

(∂x + ∂z)p
∣∣∣
x=z=0

≥ αα(1− α)1−α · Cap(α,1−α)(p).

Additionally, this bound is tight for any fixed α ∈ [0, 1].
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The bound for multiaffine polynomials in general
Lemma: (∂x + ∂z)p

∣∣∣
x=z=0

≥ αα(1− α)1−α · Cap(α,1−α)(p).

Theorem (Mutliaffine bound, Anari-Oveis Gharan ’17)
Given real stable polynomials p, q ∈ R1

+[x] and any α ∈ [0, 1]n, we have

〈p, q〉1 ≥
[ n∏

i=1
ααi

i (1− αi )1−αi

]
· Capα(p) · Cap1−α(q).

Additionally, this bound is tight for any fixed α ∈ [0, 1]n.

Proof strategy: Induction with partial evaluation, per usual.

Want: For real stable f (x, z) ∈ R(1,1)
+ [x, z] (think f (x, z) = p(x)q(z)),[ n∏

i=1
(∂xi + ∂zi )

∣∣∣
xi =zi =0

]
f (x, z) ≥

[ n∏
i=1

ααi
i (1− αi )1−αi

]
· Cap(α,1−α)(f ).
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Proof of the multiaffine bound
To prove: For real stable f (x, z) ∈ R(1,1)

+ [x1, . . . , xn, z1, . . . , zn],[ n∏
i=1

(∂xi + ∂zi )
∣∣∣
xi =zi =0

]
f (x, z) ≥

[ n∏
i=1

ααi
i (1− αi )1−αi

]
· Cap(α,1−α)(f ).

Define Di := (∂xi + ∂zi )
∣∣∣
xi =zi =0

and Ci := ααi
i (1− αi )1−αi .

Induction on n: For β := (α1, . . . , αn−1), apply bound to Dnf :(n−1∏
i=1

Di

)
Dnf ≥

(n−1∏
i=1

Ci

)
· Cap(β,1−β)(Dnf ).

Next:
[
(
∏n−1

i=1 Di )f
]

(xn, zn) is real stable since Di preserves stability.

Also: For fixed x ′ := (x1, . . . , xn−1) > 0 and z ′ := (z1, . . . , zn−1) > 0, we
have that f (x ′, xn, z ′, zn) ∈ R+[xn, zn] is real stable, and base case gives

Dn
[
f (x ′, xn, z ′, zn)

]
≥ Cn · Cap(αn,1−αn)

(
f (x ′, xn, z ′, zn)

)
.
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Putting it all together (the general multiaffine case)

Given real stable f (x, z) ∈ R(1,1)
+ [x, z] and α ∈ [0, 1]n, we have

1 Induction:
(∏n−1

i=1 Di
)

Dnf ≥
(∏n−1

i=1 Ci
)
· Cap(β,1−β)(Dnf )

2 Final step: Dnf (x ′, z ′) ≥ Cn · Cap(αn,1−αn) (f (x ′, xn, z ′, zn))

Now combine (recall β = (α1, . . . , αn−1)):( n∏
i=1

Di

)
f ≥

(n−1∏
i=1

Ci

)
· inf

x′,z′>0

Dnf (x ′, z ′)
(x ′)β(z ′)1−β

≥
( n∏

i=1
Ci

)
· inf

x′,z′>0

infxn,zn>0
f (x′,xn,z′,zn)

xαn
n z1−αn

n

(x ′)β(z ′)1−β

=
( n∏

i=1
Ci

)
· inf

x,z>0

f (x, z)
xαz1−α

=
( n∏

i=1
Ci

)
· Cap(α,1−α)(f ).

Thus: f = p(x)q(z) gives 〈p, q〉1 ≥ αα(1−α)1−α ·Capα(p) ·Cap1−α(q).
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The bound in full generality
Theorem: 〈p, q〉1 ≥ αα(1−α)1−α · Capα(p) · Cap1−α(q).

Theorem (Gurvits-L ’18)
Given real stable polynomials p, q ∈ Rλ

+[x] and any α ∈ Rn
+, we have

〈p, q〉λ ≥
[ n∏

i=1

ααi
i (λi − αi )λi−αi

λλi
i

]
· Capα(p) · Capλ−α(q).

Additionally, this bound is tight for any fixed α ∈ Rn
+.

Proof strategy: Polarization preserves real stability and capacity.

Degree-agnostic version: For real stable p, q ∈ R+[x] and any α ∈ Rn
+,

〈p, q〉∞ := p(∂x)q(x)
∣∣∣
x=0
≥ ααe−α · Capα(p) · Capα(q).

Note: The inner product 〈p, q〉∞ is an actual inner product. The above
theorem can also be “untwisted” by mapping q 7→ xλ · q(x−1

1 , . . . , x−1
n ).

Jonathan Leake (TU Berlin) Linear Operator Bounds Winter 2020-2021 19 / 22



Outline

1 Motivation
Capacity preserving linear operators
Hopeful applications
A unified approach

2 Bilinear form bounds
A special bilinear form for real stable polynomials
Strong Rayleigh inequalities
The bound for multiaffine polynomials
The bound in full generality

3 Capacity preserving linear operators

Jonathan Leake (TU Berlin) Linear Operator Bounds Winter 2020-2021 20 / 22



From the bilinear form to linear operators

Recall: The symbol of an operator T : Rλ[[x]→ R[x]:

Symbλ[T ](x, y) := T
[ n∏

i=1
(xi + yi )λi

]
=

∑
0≤µ≤λ

(
λ

µ

)
yλ−µT [xµ].

Here T acts only on the x variables.

Recall: Morally, T preserves real stability iff Symbλ[T ] is real stable.

How was this proven? We used 〈·, ·〉λ via the fact that

T [p](x) =
〈

Symbλ[T ](x, y), p(y)
〉

λ

where 〈·, ·〉λ acts on the y variables.

Question: Can we use this to prove capacity bounds for linear operators?

In particular, this will help with the non-perfect matchings application.
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Capacity bounds for linear operators
Last slide:

T [p](x) =
〈

Symbλ[T ](x, y), p(y)
〉

λ
.

If Symbλ[T ] is real stable, then for any α > 0 and any fixed x > 0 we have

T [p](x) =
〈

Symbλ[T ](x, y), p(y)
〉

λ

≥ αα(λ−α)λ−α

λλ
· Capα(p) · Capλ−α(Symbλ[T ](x, ·)).

For any β > 0, divide by xβ and take inf:

inf
x>0

T [p](x)
xβ

≥ αα(λ−α)λ−α

λλ
· Capα(p) · inf

x>0

Capλ−α(Symbλ[T ](x, ·))
xβ

.

Theorem [Gurvits-L ’18]:
If p and Symbλ[T ] are real stable, then for any α,β > 0 we have

Capβ(T [p])
Capα(p) ≥ αα(λ−α)λ−α

λλ
Cap(β,λ−α)(Symbλ[T ]).
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