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Notation

Polynomial notation:
R,R+,Z+ := reals, non-negative reals, non-negative integers.
xµ :=

∏
i xµi

i and µ ≤ λ is entrywise.
R[x] := v.s. of real polynomials in n variables.
R+[x] := v.s. of real polynomials with non-negative coefficients.
Rλ[x] := v.s. of polynomials of degree at most λi in xi .
For p ∈ R[x], we write p(x) =

∑
µ pµxµ.

For d-homogeneous p ∈ R[x], we write p(x) =
∑
|µ|=d pµxµ.

d
dx = ∂

∂x = ∂x := derivative with respect to x , and ∂µ
x :=

∏
i ∂

µixi .
supp(p) = support of p = the set of µ ∈ Zn

+ for which pµ 6= 0.
Newt(p) = Newton polytope of p = convex hull of the support of p
as a subset of Rn.
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“Inner product” capacity bounds
Recall: Given p ∈ R+[x] and α > 0, we define

Capα(p) := inf
x>0

p(x)
xα

= inf
x>0

p(x)
xα1

1 · · · x
αnn
.

Recall: Given p, q ∈ Rλ
+[x], we define

〈p, q〉λ :=
∑

0≤µ≤λ

(
λ

µ

)
pµqλ−µ =

∑
0≤µ≤λ

(
λ1
µ1

)
· · ·
(
λn
µn

)
pµqλ−µ.

Theorem (Anari-Oveis Gharan ’17, Gurvits-L ’18)
Given real stable polynomials p, q ∈ Rλ

+[x] and any α > 0, we have

〈p, q〉λ ≥
[ n∏

i=1

ααi
i (λi − αi )λi−αi

λλi
i

]
Capα(p) Capλ−α(q).

Note: Can “untwist” inner product to get bound with Capα(p) Capα(q).
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Linear operator capacity bounds
Recall: Given a linear operator T : Rλ

+[x]→ R+[x], define

Symbλ[T ](x, z) := T
[ n∏

i=1
(xi + zi )λi

]
=

∑
0≤µ≤λ

(
λ

µ

)
zλ−µT [xµ].

Theorem (Gurvits-L ’18)
Given real stable p ∈ Rλ

+[x], a linear operator T : Rλ
+[x]→ R+[x] with

real stable symbol, and any sensible α,β > 0, we have

Capβ(T [p])
Capα(p) ≥

[ n∏
i=1

ααi
i (λi − αi )λi−αi

λλi
i

]
Cap(β,λ−α)(Symbλ[T ]).

Further, this bound is tight for given α,β,λ,T.

Sanity check: What happens if T = ∂xn |xn=0 (Gurvits’ thoerem)?

Recall: T acts on n-homogeneous polynomials in n variables. Best general
choice is λ = (n, n, . . . , n). Note: We could choose better λ if possible.
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Sanity check: Gurvits’ theorem
If T = ∂xn |xn=0 and λ = n · 1, then

Symbn·1[T ](x, z) = T
[∏n

i=1(xi + zi )n
]

= n · zn−1
n

∏n−1
i=1 (xi + zi )n.

Now choose α = 1 (length n) and β = 1 (length n − 1). We have

Cap(1,n·1−1)(Symbn·1[T ]) = inf
x,z>0

n · zn−1
n

∏n−1
i=1 (xi + zi )n

x1 · · · xn−1zn−1
1 · · · zn−1

n

= n · inf
x,z>0

n−1∏
i=1

(xi + zi )n

xizn−1
i

= n ·
n−1∏
i=1

Cap(1,n−1)

(
(xi + zi )n

)

= n
[
n
( n

n − 1

)n−1
]n−1

= n
[ nn

(n − 1)n−1

]n−1
.

Last step: Our favorite calculus problem, raised to the n − 1 power.
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Sanity check: Gurvits’ theorem
Last slide: For T = ∂xn |xn=0 and λ = n · 1, α = 1, β = 1, we have

Cap(1,n·1−1)(Symbn·1[T ]) = n
[ nn

(n − 1)n−1

]n−1
.

By the theorem, we have

Cap1(T [p])
Cap1(p) ≥

( n∏
i=1

11(n − 1)n−1

nn

)
n
[ nn

(n − 1)n−1

]n−1

= n · (n − 1)n−1

nn =
(n − 1

n

)n−1
.

Rearrange to get Gurvits’ theorem:

Cap1

(
∂xn |xn=0 p

)
≥
(n − 1

n

)n−1
Cap1(p).

Bonus: Choosing more refined λ gives a better bound.
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Potential application: Non-perfect matchings
Let G be a (a, b)-biregular (m, n)-bipartite graph (am = bn) and consider:

Bipartite adjacency matrix, A:
1 0 0 1 1 0
1 1 1 0 0 0
0 1 0 0 1 1
0 0 1 1 0 1


# k-matchings = k-subpermanents
(a, b)-regular ⇐⇒ (a, b)-stochastic

We can associate a polynomial to G in the same way as before:

pG(x) :=
m∏

i=1

n∑
j=1

Aijxj

Question: What operator picks out k-matchings?
Jonathan Leake (TU Berlin) Linear Operator Applications Winter 2020-2021 10 / 25



Potential application: Non-perfect matchings
For (a, b)-regular (m, n)-bipartite G with adjacency matrix A:

pG(x) :=
m∏

i=1

n∑
j=1

Aijxj

# perfect matchings = permanent = ∂
[n]
x
∣∣∣
x=0

pG

# k-matchings = sum of k-subpermanents ≈
∑

S∈([n]
k ) ∂

S
x

∣∣∣
x=1

pG

Evaluation at 1 instead of 0: requires regularity of the graph.∑
S∈([n]

k )
∂S

x

∣∣∣
x=1

pG = µk(G) · am−k (a is the row sum)

Also: Degree of pG is λ = (col sum) · 1 = (b, b, . . . , b), by regularity.

Questions: Does
∑

S∈([n]
k ) ∂

S
x

∣∣∣
x=1

have real stable symbol? Yes. What is
its capacity? We will compute this.
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The counting operator
Last slide: T =

∑
S∈([n]

k ) ∂
S
x

∣∣∣
x=1

where λ = b · 1:

Symbλ[T ](x, z) = T
[ n∏

i=1
(xi + zi )b

]

= bk

 ∑
S∈( [n]

n−k)

∏
i∈S

(1 + zi )

 n∏
i=1

(1 + zi )b−1

= bk · en−k(1 + z1, . . . , 1 + zn) ·
n∏

i=1
(1 + zi )b−1.

This is a product of real stable polynomials =⇒ Symbλ[T ] is real stable.

What about capacity? Recall the theorem:
Capβ(T [pG ])

Capα(pG) ≥ αα(λ−α)λ−α

λλ
· Cap(β,λ−α)

(
Symbb·1[T ]

)
.

Know: β must be 0. What about α?
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Choosing α based on G

Know: Capα(p) = p(1) iff α = ∇ log p(1). What is ∇ log pG(1)?

∇|x=1 log
m∏

i=1

n∑
j=1

Aijxj =
m∑

i=1
∇|x=1 log

n∑
j=1

Aijxj =
m∑

i=1

(Aij
a

)n

j=1
= b

a · 1.

So: Cap b
a ·1

(pG) = pG(1) =
∏m

i=1 a = am.

Therefore:

am−k · µk(G)
am = Cap0(T [pG ])

Cap b
a ·1

(pG)

≥

(b
a ) b

a (b − b
a )b− b

a

bb

n

· Cap(0,(b− b
a )·1)

(
Symbb·1[T ]

)
.

Note: (b − b
a ) · 1 does not pick out a coefficient of Symbb·1[T ].
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Computing the capacity

Fingers crossed: Our choice of α works well with Symb[T ] too.

Cap(0,(b− b
a )·1)

(
Symbb·1[T ]

)
= inf

z>0

bk · en−k(1 + z) ·
∏n

i=1(1 + zi )b−1

zb− b
a

1 · · · zb− b
an

.

Can we compute? Symb[T ] and α symmetric =⇒ inf attained at z · 1:

Cap(0,(b− b
a )·1)

(
Symbb·1[T ]

)
= inf

z>0

bk( n
n−k

)
· (1 + z)n−k+n(b−1)

zn(b− b
a )

This is our favorite calculus problem. Therefore:

µk(G) ≥ explicit constant depending on a, b, k, n.

This yields the best known bound at this level of generality. (Proven
before by Csikvári using different “entropic” methods.)
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Putting it all together

Theorem (Csikvári ’14, Gurvits-L ’18)
Given an (a, b)-regular bipartite graph on m + n vertices, we have

µk(G) ≥
(

n
k

)
(ab)k mm(ma − k)ma−k

(ma)ma(m − k)m−k .

Pro: Proof is elementary, after assuming the linear operator bound.
Con: Proof was very delicate based on all parameters. Though:
while row sum = a must hold, we could choose λ based on vertex
degrees in G and then estimate Cap(Symb[T ]) via convex program.
???: Csikvári’s proof relied heavily on intuition about bipartite
graphs; our proof does not at all.

[Schrijver ’98]: Perfect matchings for d-regular bipartite graph for m = n.

µn(G) ≥ d2n nn(nd − n)nd−n

(nd)nd =
(

(d − 1)d−1

dd−2

)n

.
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Potential application: Intersection of two matroids

Recall: A matroid M on a ground set E can be defined as a non-empty
collection B of size-d subsets of E called bases of M, which satisfy:

Exchange axiom: For all B1,B2 ∈ B and e ∈ B1 \ B2, there exists
f ∈ B2 \ B1 such that B1 ∪ {f } \ {e} ∈ B.

E.g.: Linear bases in a collection of vectors, spanning trees of a graph.

Recall: For any matroid, the basis-generating polynomial is Lorentzian:

pM(x) :=
∑
B∈B

xB =
∑
B∈B

∏
e∈B

xe ∈ R1
+[x].

Matroid intersection problem: Given matroids M1,M2 on the same
ground set E , count or approximate |B1 ∩ B2|.

Answer: |B1 ∩B2| = 〈pM1 , pM2〉1 ≥ αα(1−α)1−α Capα(pM1) Capα(pM2).

New problem: How can we compute Capα(pM)? E.g., pM(1) = |B|.
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Caveats
Note: Above we said

|B1 ∩ B2| = 〈pM1 , pM2〉 ≥ αα(1−α)1−α Capα(pM1) Capα(pM2).

Here we use the “untwisted” inner product 〈p, q〉1 =
∑

µ pµqµ.

How? Let q̃ := x1 · q(x−1
1 , . . . , x−1

n ) for q ∈ R1
+[x], which is real stable

whenever q is real stable. Then:∑
µ

pµqµ =
∑
µ

pµq̃1−µ ≥ αα(1−α)1−α · inf
x>0

p(x)
xα
· inf

x>0

q̃(x)
x1−α

Finally: inf
x>0

q̃(x)
x1−α

= inf
x>0

x1 · q(x−1)
x1−α

= inf
x>0

q(x)
xα

= Capα(q).

Also: We use the real stable bound, even though matroid generating
polynomials are only Lorentzian.

Further: The operation q̃ doesn’t preserve Lorentzian! But it does
preserve matroid generating polynomials.
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A probabilistic approach
Associate a polynomial f ∈ R1

+[x] to probability distribution ν on supp(f ):

P[ν = S] := fS where f (x) =
∑

S∈supp(p)
fSxS and f (1) = 1.

Some facts:
Marginals E[ν] = ∇f (1) =: γ. How?

E[νi ] =
∑

S
δi∈S · fS =

∑
S3i

fS = ∂xi f (1).

Entropy = H(ν) = −
∑

S fS log fS . Basic fact:

H(ν) ≤
n∑

i=1
H(γi , 1− γi ) :=

n∑
i=1
− [γi log γi + (1− γi ) log(1− γi )] .

[A-OG-V ’18]: If f log-concave in Rn
+, then H(ν) ≥ −

n∑
i=1

γi log γi .

Entropy proofs: Jensen’s inequality, concavity/monotonicity of log, etc.
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Probability and counting
For any collection S of subsets of {0, 1}n (e.g. bases of matroid), consider:

f (x) = 1
|S|

∑
S∈S

xS =⇒ P[ν = S] = 1
|S|

.

Compute the entropy: H(ν) = −
∑

S
1
|S| log 1

|S| = log |S|.

That is: We can approximate |S| by approximating the entropy of ν.

Apply entropy facts from the previous slide: If f log-concave,
n∑

i=1
H(γi , 1− γi ) ≥ H(ν) = log |S| ≥ −

n∑
i=1

γi log γi .

Problems: How to approximate γ? (Just as hard as approximating |S|.)
We want to count B1 ∩ B2, for which the polynomial is not log-concave.

Solutions: Capacity is related to the marginals ∇p(1). Use the inner
product to relate individual Bi polynomials to the quantity |B1 ∩ B2|.
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Using the inner product bound
Given matroids M1 and M2 and any α, the inner product bounds gives

log |B1 ∩ B1| = log〈pM1 , pM2〉1 ≥ log
[
αα(1−α)1−α Capα(pM1 ) Capα(pM2 )

]
= −

n∑
i=1
H(αi , 1− αi ) + log Capα(pM1) + log Capα(pM2)

In turns out (next week): When p is log-concave and α ∈ Newt(p),
log Capα(p) is the entropy of a log-concave distribution with marginals α.

Use our entropy facts: For any α ∈ Newt(pM1) ∩ Newt(pM2),

n∑
i=1
H(γi , 1− γi ) ≥ log |B1 ∩ B2| ≥ −

n∑
i=1
H(αi , 1− αi )− 2

n∑
i=1

αi logαi

=
n∑

i=1
H(αi , 1− αi ) + 2

n∑
i=1

(1− αi ) log(1− αi )

Also: −
∑n

i=1(1− αi ) log(1− αi ) ≤
∑n

i=1 αi = d = rank/degree.
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Putting it all together
Combine the above:

f is the normalized generating polynomial for B1 ∩ B2 with associated
distribution ν and marginals γ ∈ Newt(f ).
The entropy of ν is given by H(ν) = log |B1 ∩ B2|.
p1 and p2 are the unnormalized generating polynomials for B1 and B2.
α is any element of Newt(p1) ∩ Newt(p2) = Newt(f ).

With all that, we have:
n∑

i=1
H(γi , 1− γi ) ≥ log |B1 ∩ B2| = 〈pM1 , pM2〉1 ≥

n∑
i=1
H(αi , 1− αi )− 2d .

Finally: How do we actually approximate log |B1 ∩ B2|?

Answer: Choose α ∈ Newt(f ) so that right-hand side is maximized.
n∑

i=1
H(αi , 1−αi ) ≥

n∑
i=1
H(γi , 1−γi ) ≥ log |B1∩B2| ≥

n∑
i=1
H(αi , 1−αi )−2d .
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The algorithm

Algo: Find α which maximizes
∑

i H(αi , 1− αi ) over Newt(f ), where

f (x) = 1
|B1 ∩ B2|

∑
B∈B1∩B2

xB.

How? First, Newt(f ) = Newt(p1) ∩ Newt(p2). Next, matroid basis
polytopes characterize collections of subsets for which the greedy algo
(Kruskal) can be used to maximize linear functionals (need indep oracle).

Therefore:
1 Maximize linear functionals on Newt(pi ) =⇒
2 Separation oracle for Newt(pi ) =⇒
3 Separation oracle for Newt(f ) = Newt(p1) ∩ Newt(p2)
4 Efficient convex optimization for Newt(f ) via ellipsoid method.

Now what? −
∑

i H(αi , 1− αi ) =
∑

i [αi logαi + (1− αi ) log(1− αi )] is
a convex function on [0, 1]n =⇒ Efficient algo for basis intersection.
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Open questions
General open question: Are there other linear operators or situations
where the inner product or linear operator capacity bounds can be used to
bound or approximate some quantity?

As of now, only differential operators have been used and analyzed.

What situations require other operators?

Open problem: Given d-homogeneous real stable (or Lorentzian? or
something more general?) polynomials p, q ∈ R+[x], define

〈p, q〉SUn :=
∑
|µ|=d

(
d
µ

)−1

pµqµ

where
(d

µ

)
is the multinomial coefficient. Prove for any α that:

〈p, q〉SUn ≥
αα1

1 · · ·ααn
n

dd · Capα(p) · Capα(q).

Open even for p, q of the form det(
∑

i xiAi ) for PSD Ai .
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