Capacity and Invariant Theory Polynomial Capacity: Theory, Applications, Generalizations

Jonathan Leake

Technische Universität Berlin

February 18th, 2021

Outline

Last time

- Matrix scaling
- Operator scaling

Null-cone problem

- Motivation
- The moment map and moment polytope
- Connection to capacity
- Scaling-type algorithm

3 Further questions

Outline

🕽 Last time

- Matrix scaling
- Operator scaling

Null-cone problem

- Motivation
- The moment map and moment polytope
- Connection to capacity
- Scaling-type algorithm

B Further questions

The matrix scaling problem

Let *M* be an $m \times n$ matrix with \mathbb{R}_+ entries, and fix $r \in \mathbb{R}^m_+$ and $c \in \mathbb{R}^n_+$.

Definition: A scaling of M is given by multiplying M on the left and right by diagonal matrices with positive entries:

scaling = $AMB \implies (AMB)_{ij} = a_{ii}m_{ij}b_{jj}$.

Question: Given M, do there exist such A, B such that the row sums and column sums of AMB are r and c respectively?

Sinkhorn's algorithm is a very simple iterative algorithm for M_t . For r = c = 1 (doubly stochastic scaling), the algorithm is:

- Scale the columns so that $col-sums(M_{t+1}) = 1$.
- Scale the rows so that row-sums $(M_{t+2}) = 1$ (changes col sums).
- **③** Repeat iterations until M_t is almost doubly stochastic.

Keep track of $M_t = \cdots A_6 A_4 A_2 M B_1 B_3 B_5 \cdots$, which gives A and B.

Almost doubly sotchastic \implies scalable to doubly stochastic.

Why do we care about matrix scaling?

Application: Deterministic approximation to the permanent. **How?** Given an $n \times n$ matrix M, set $\mathbf{r} = \mathbf{c} = \mathbf{1}$. Suppose we have obtained the matrices A, B which scale M to the correct row/column sums.

Since AMB is doubly stochastic, we can use van der Waerden bound:

$$1 \geq \mathsf{per}(AMB) \geq \frac{n!}{n^n} \geq e^{-n} \quad (\mathsf{e.g., recall } \mathsf{Cap}_1(p) \geq p_1 \geq \frac{n!}{n^n} \operatorname{Cap}_1(p)).$$

Now: $\operatorname{per}(AMB) = \operatorname{det}(A) \operatorname{per}(M) \operatorname{det}(B)$. Therefore: $[\operatorname{det}(A) \operatorname{det}(B)]^{-1} \ge \operatorname{per}(M) \ge e^{-n} [\operatorname{det}(A) \operatorname{det}(B)]^{-1}$.

This says that $det(AB)^{-1}$ is an e^n -approximation to the permanent of M. (And a similar bound holds when AMB close to doubly stochastic.)

[Linial-Samorodnitsky-Wigderson '00]: No capacity at the time, but the vdW bound was already proven by Egorychev and Falikman.

Given M, want to compute A, B so that AMB is almost doubly stochastic.

Main algorithm steps:

- **9** Preprocessing: Scale to get M_1 such that $per(M_1) \ge \frac{1}{n^n}$.
- **3** Sinkhorn: Apply iterative scaling until $\|\mathbf{1} \mathbf{c}_t\|_2$ is small.
- **§** Approximation: M_t is close to doubly stochastic $\implies \approx e^n$ -approx.

Output: $A = A_2 A_4 A_6 \cdots$ and $B = B_1 B_3 B_5 \cdots$ and $per(M) \approx det(AB)^{-1}$.

Different "marginals": Similar algorithm given in [LSW '00].

General form of multiplicative iterative scaling algorithms:

- **Output** Lower bound: Only need "small" number of steps to get close to DS.
- **Progress:** Apply Sinkhorn until "marginals" close to DS.
- **Once close to DS**, use vdW-type approximation.

This framework works in more general operator / tensor scaling setting.

Let T be a linear operator from $m \times m$ matrices to $n \times n$ matrices which maps PSD matrices to PSD matrices.

Definition: A scaling of *T* is given by PD matrices *A*, *B*:

scaling = $A^{1/2}T(B^{1/2}XB^{1/2})A^{1/2}$, another PSD-preserving operator.

Question: Given T, do there exist A, B to scale to "doubly stochastic"? **Doubly stochastic operator:** $T(I_m) = I_n$ and $T^*(I_n) = I_m$ ($\implies m = n$). **Translated to matrices:** $M \cdot \mathbf{1} = \mathbf{1}$ and $M^* \cdot \mathbf{1} = \mathbf{1}$ (doubly stochastic).

Gurvits-Sinkhorn algorithm: Alternate scaling T and T^* :

$$\cdots A_3^{1/2} A_1^{1/2} T \left(\cdots B_4^{1/2} B_2^{1/2} X B_2^{1/2} B_4^{1/2} \cdots \right) A_1^{1/2} A_3^{1/2} \cdots$$

The A_i matrices scale to $T(I_n) = I_n$, the B_j matrices scale to $T^*(I_n) = I_n$).

Why do we care about operator scaling?

Recall: T is almost scalable to DS iff rank-nondecreasing.

$$\mathsf{CP} \text{ operator: } T(X) = \sum_{k=1}^{\ell} M_k^* X M_k \quad \Longrightarrow \quad T^*(X) = \sum_{k=1}^{\ell} M_k X M_k^*.$$

Why do we care about rank non-decreasing? Equivalent properties (see [Garg-Gurvits-Oliveira-Wigderson '15], Theorem 1.4):

•
$$\operatorname{rank}(T(X)) \ge \operatorname{rank}(X)$$
 for all $X \succ 0$.

- **2** For some B_1, \ldots, B_ℓ , the matrix $\sum_{k=1}^{\ell} B_k \otimes M_k$ is non-singular.
- So For some *d*, the polynomial det $\left(\sum_{k=1}^{\ell} X_k \otimes M_k\right)$ is not identically 0 where X_k is a $d \times d$ matrix of variables.
- The "polynomial" $Det\left(\sum_{k=1}^{\ell} M_k x_k\right)$ is not identically 0, where x_1, \ldots, x_{ℓ} are *non-commuting* variables (non-commutative "Det").
- So The tuple (M_1, \ldots, M_ℓ) is not in **null-cone** of left-right action of SL_n^2 .

#4: (non-commutative) polynomial identity testing, (NC)PIT: When is the determinant of a matrix of linear forms identically zero? [Kabanets-Impagliazzo]: Poly-time PIT \implies complexity *lower* bounds.

The general form of the algorithm

Recall the form, for some "measure of progress" μ :

- **9** Preprocess: Scale to T_1 such that $\mu(T_1) \ge e^{-\operatorname{poly}(n)}$.
- **2** Iterations: Iterate poly(*n*) times, improving $\mu(T_t)$ multiplicatively by $1 + \frac{1}{O(\text{poly}(n))}$ each time based on "closeness of marginals".
- Approximation: Once "marginals" are close to doubly stochastic, we can approximate / know T is almost scalable.

Matrix case: μ = permanent. Could have also used μ = Cap₁, since p is doubly stochastic iff Cap₁(p) = 1 and Cap₁(p) \leq 1 otherwise.

Operator case: $\mu = \text{matrix capacity, } Cap(T) := \inf_{X \succ 0} \frac{\det(T(X))}{\det(X)}.$

[Gurvits '04]: The following are equivalent:

- Cap(T) > 0.
- \bigcirc T is rank non-decreasing.
- **3** For all $\epsilon > 0$, we have $T_t(I_n) = I_n$ and $||T_t^*(I_n) I_n||_F \le \epsilon$ for $t \gg 0$.
- For some t, we have $T_t(I_n) = I_n$ and $||T_t^*(I_n) I_n||_F \leq \frac{1}{n+1}$.

Outline

Last time

- Matrix scaling
- Operator scaling

Null-cone problem

- Motivation
- The moment map and moment polytope
- Connection to capacity
- Scaling-type algorithm

Further questions

The null-cone problem

Let $\pi : G \to GL(V)$ be a representation of a group G (i.e., π is a group homomorphism and V is a vector space).

Definition: An orbit of $v \in V$ is the set $\mathcal{O}_v := \{\pi(g)v : g \in G\} \subset V$.

Definition: The **null-cone** of *V* or π is the set $\{v : 0 \in \overline{\mathcal{O}_v}\}$.

[Hilbert], **[Mumford '65]**: v is in the null-cone iff for every non-constant homogeneous *G*-invariant polynomial p on V we have p(v) = 0.

E.g.: v in null-cone $\implies \pi(g_i)v \rightarrow 0 \implies p(v) = p(\pi(g_i)v) = p(0) = 0.$

[Kempf-Ness '79]: v is not in the null-cone iff $\mu(w) = 0$ for some $w \in \overline{\mathcal{O}_v}$, where μ is the **moment map** of π .

Moment map: Something like the "gradient" of the action of π at g = id:

$$``\mu(w) = \nabla|_{X=0} \log \|\pi(e^X)w\|".$$

Convex programming: f = ||w|| attains minimum at w_0 iff $\nabla f(w_0) = 0$.

Why do we care about the null-cone problem?

Last slide: Given $\pi : G \to GL(V)$, the null-cone is the set $\{v : 0 \in \overline{\mathcal{O}_v}\}$. Operator scaling: Let $G = SL_n^2(\mathbb{C})$ acting on $V = (\mathbb{C}^{n \times n})^{\ell}$ given by $\pi(g, h) \cdot (M_1, \dots, M_{\ell}) := (gM_1h^{-1}, \dots, gM_{\ell}h^{-1}).$

Recall (NC-PIT): (M_1, \ldots, M_ℓ) in null-cone iff $Det\left(\sum_{k=1}^\ell M_k x_k\right) \equiv 0$.

Non-convex optimization: v in the null-cone iff $\inf_{g \in G} ||\pi(g)v|| = 0$.

Other less obvious applications (see [BFGOWW '19]):

- Horn's problem: Given vectors $\alpha, \beta, \gamma \in \mathbb{R}^n$, are there Hermitian matrices A, B, C with these spectra such that A + B + C = 0?
- **Brascamp-Lieb:** Given linear maps $A_i : \mathbb{R}^n \to \mathbb{R}^{n_i}$ and $p_1, \ldots, p_m > 0$, is there a finite constant *C* such that

$$\int_{\mathbb{R}^n} \prod_i f_i(A_i \mathbf{x}) d\mathbf{x} \leq C \cdot \prod_i \|f_i\|_{1/
ho_i}$$

for all f_i? Cauchy-Schwarz, Hölder, Loomis-Whitney, ...

The moment map and moment polytope

Throughout: Think $G = GL_n(\mathbb{C})$ or $G = \mathbb{T}^n$ with $\pi : G \to GL(V)$. **Definition:** The moment map $\mu(v)$ for $v \in V$ is defined via

$$\langle H, \mu(\mathbf{v})
angle := \left. \partial_t \right|_{t=0} \log \|\pi(e^{tH})\mathbf{v}\|,$$

and $\mu(v)$ is Hermitian for $GL_n(\mathbb{C})$ or a real (diagonal) vector for \mathbb{T}^n . **Idea:** $\mu(v)$ is the "gradient" of $\log ||\pi(e^X)v||$ at X = 0. **Moment polytope:** $\Delta(v) := \overline{\{\text{eig}(\mu(w)) : w \in \mathcal{O}_v\}}$ is a convex polytope. **Kempf-Ness:** v not in null-cone iff $\mu(w) = 0$ for a $w \in \overline{\mathcal{O}_v}$ iff $\mathbf{0} \in \Delta(v)$. **Recap:** The following solve the same problem.

- Null-cone membership problem.
- **2** Polytope membership problem (for x = 0)
- Sorm/gradient minimization problem
- Scaling problem: find $g \in G$ which minimizes $||\pi(g)v||$.
- O Capacity minimization problem?

The commutative case: $G = \mathbb{T}^n = (\mathbb{C}^{\times})^n$

Rep. theory: Commutative $G \implies$ basis of simultaneous eigenvectors. **Further:** Orthonormal basis v_1, \ldots, v_n such that $\pi(\mathbf{g})v_k = \lambda_k(\mathbf{g})v_k$ and:

$$\lambda_k(\boldsymbol{g}) = \boldsymbol{g}^{\omega_k} := \prod_{i=1}^n \boldsymbol{g}_i^{\omega_{k,i}},$$

where ω_k are fixed **integer** vectors independent of \boldsymbol{g} .

Null-cone objective:
$$\|\pi(\boldsymbol{g})v\|_2^2 = \left\|\sum_{k=1}^n c_k v_k \boldsymbol{g}^{\omega_k}\right\| = \sum_{k=1}^n |c_k|^2 \cdot |\boldsymbol{g}|^{2\omega_k}.$$

Optimization:
$$\inf_{\boldsymbol{g}\in\mathbb{T}} \|\pi(\boldsymbol{g})\boldsymbol{v}\|_2^2 = \inf_{\boldsymbol{g}\in\mathbb{T}} \sum_{k=1}^n |c_k|^2 \cdot |\boldsymbol{g}|^{2\omega_k} = \inf_{\boldsymbol{x}>0} \sum_{k=1}^n |c_k|^2 \boldsymbol{x}^{2\omega_k}.$$

This is essentially capacity. Abusing notation: $\operatorname{Cap}_{\mathbf{0}}\left(\sum_{k=1}^{n}|c_{k}|^{2}\mathbf{x}^{2\omega_{k}}\right)$.

So: Null-cone optimization becomes "polynomial capacity". **What about moment map formulation (finding zero of gradient)?**

Jonathan Leake (TU Berlin)

Capacity and Invariant Theory

The commutative case: $G = \mathbb{T}^n = (\mathbb{C}^{\times})^n$

Last slide: $\|\pi(\boldsymbol{g})v\|_2^2 = \sum_{k=1}^n |c_k|^2 \cdot |\boldsymbol{g}|^{2\omega_k} \implies$ "capacity" problem. Moment map: $\langle \boldsymbol{y}, \mu(v) \rangle = \partial_t|_{t=0} \log \|\pi(e^{t\boldsymbol{y}})v\|$. We have:

$$\langle \boldsymbol{e}_{j}, \mu(\boldsymbol{v}) \rangle = \left. \partial_{t} \right|_{t=0} \log \sum_{k=1}^{n} |\boldsymbol{c}_{k}|^{2} \cdot e^{2t \langle \boldsymbol{e}_{j}, \omega_{k} \rangle} = \frac{\sum_{k=1}^{n} |\boldsymbol{c}_{k}|^{2} \cdot 2\omega_{k,j}}{\sum_{k=1}^{n} |\boldsymbol{c}_{k}|^{2}}.$$

Therefore: $\mu(v) = \frac{\sum_{k=1}^{n} |c_k|^2 \cdot 2\omega_k}{\sum_{k=1}^{n} |c_k|^2} \implies \text{convex combination of } 2\omega_k.$

Further: Moment polytope $\Delta(v) = \overline{\{\mu(w) : w \in \mathcal{O}_v\}}$ is precisely the "Newton" polytope of the "polynomial" $\|\pi(\mathbf{g})v\|_2^2$. (c_k vary, but not ω_k)

Kempf-Ness: Cap₀ $\left(\sum_{k=1}^{n} |c_k|^2 x^{2\omega_k}\right) > 0$ iff $\mathbf{0} \in \text{Newt}\left(\sum_{k=1}^{n} |c_k|^2 x^{2\omega_k}\right)$.

Already proven before via direct computation, entropy, etc. Also known in this case as **Farkas' lemma**.

Invariant-theoretic capacity

Last slide: $\inf_{g} ||\pi(g)v||$ is a capacity problem in the commutative case. In more general cases, let's just **make this the definition**:

$$\mathsf{Cap}_{\mathbf{0}}(v) := \inf_{g \in G} \|\pi(g)v\|.$$

"Non-commutative" capacity, "invariant-theoretic" capacity, etc.

Also called **non-commutative geometric programming** since the commutative case captures unconstrained **geometric programming** (see [Bürgisser-Li-Nieuwboer-Walter '20]).

Kempf-Ness: $Cap_0(v) > 0$ iff **0** is in the moment polytope \implies Generalization of the same statement for polynomial capacity.

Recall: $\inf_{y \in \mathbb{R}^n} \log \sum_{k=1}^n |c_k|^2 e^{\langle y, 2\omega_k \rangle}$ is a convex program. Can we do the same thing to non-commutative capacity?

Appears to be "no"... (but general capacity is still **geodesically convex**). **Is there a scaling-type algorithm?**

Scaling-type algorithm

Recall the form, for some "measure of progress" μ :

- **9** Preprocess: Scale to T_1 such that $\mu(T_1) \ge e^{-\operatorname{poly}(n)}$.
- Iterations: Iterate poly(n) times, improving μ(T_t) each time based on "closeness of marginals".
- Approximation: Once "marginals" are close to desired, we know T is almost scalable.

Now: $\mu = Cap_0$. Can we generalize this to the null-cone problem?

- **Preprocess'**: Set $g_0 = id$.
- Iterations: Geodesic gradient descent, Taylor approx, "trust-region" methods... I.e.: Natural analogs to convex Euclidean techniques.
- **Operation:** How close do we need to get before stopping?

Approximation step is key to determine computational complexity.

Need: Relationship between value of capacity and norm of moment map.

This will heavily depend on the action π , the group G, etc.

Jonathan Leake (TU Berlin)

Capacity and Invariant Theory

Complexity of the action

Theorem [BFGOWW '19]: For ||v|| = 1, we have

$$1 - rac{\|\mu(v)\|}{\gamma(\pi)} \leq \left[\mathsf{Cap}_{\mathbf{0}}(v)
ight]^2 \leq 1 - rac{\|\mu(v)\|^2}{4N(\pi)^2}.$$

Corollary: $\mathbf{0} \in \Delta(v)$ iff $\Delta(v)$ contains a point smaller than $\gamma(\pi)$. (This $\gamma(\pi)$ *is* how close we must get before stopping.) **Proof of corollary:** (\implies) Obvious. (\Leftarrow) Kempf-Ness.

Definition: The weight norm $N(\pi)$ for $G = GL_n(\mathbb{C})$ is:

 $N(\pi) := \max_{U \subseteq V, \text{ irreducible}} \| \lambda_U \|, \text{ where } \lambda_U \text{ is highest weight vector of } U.$

Commutative case: λ_U are the simultaneous eigenvalue weights ω_k .

Definition: The weight margin $\gamma(\pi)$ is the minimum distance between **0** and any subset of the λ_U 's whose convex hull does not contain **0**.

Fun fact: For real stable polynomials and **1**, the matroidal support condition implies the "weight margin" cannot be very small.

Jonathan Leake (TU Berlin)

Capacity and Invariant Theory

Weight margin examples

Last slide: The weight margin $\gamma(\pi)$ is the minimum distance between **0** and any subset of the λ_U 's whose convex hull does not contain **0**.

Matrix scaling: Action of $(S\mathbb{T}^n)^2$ via left-right action on matrices. $\gamma(\pi) \ge \frac{1}{\operatorname{poly}(n)}$ via [Linial-Samorodnitsky-Wigderson '00].

Operator scaling: Action of $(SL_n(\mathbb{C}))^2$ on (M_1, \ldots, M_ℓ) via simultaneous left-right action. $\gamma(\pi) \geq \frac{1}{\operatorname{poly}(n)}$ via [Gurvits '04], [GGOW '15].

Tensor scaling for 3-tensors: Action of $(GL_n(\mathbb{C}))^3$ on 3-tensors. $\gamma(\pi) \leq 2^{-\operatorname{poly}(n)}$ via [Franks-Reichenbach '21] (the other day).

Last result: Negative result for this method. Open: Other methods?

Real stable polynomials formulation: Given a real stabnle polynomial with **1** not in its Newton polytope, how far away can Newton polytope be?

Outline

Last time

- Matrix scaling
- Operator scaling

Null-cone problem

- Motivation
- The moment map and moment polytope
- Connection to capacity
- Scaling-type algorithm

3 Further questions

How do we handle other points in the moment polytope besides 0? Commutative case: Just change the denominator exponent in capacity. Non-commutative case [BFGOWW '19]: Need to "shift" all weight vectors: tensor π with another representation.

Entropic capacity: Is there any relation between entropic capacity and non-commutative capacity? (There is in the commutative case.)

Further: Connection to statistic via maximum likelihood, see [Améndola-Kohn-Reichenbach-Seigal '20]. **Connection between all three?**

Open: Does any connection give better algo for 3-tensors?