Capacity and Invariant Theory
 Polynomial Capacity: Theory, Applications, Generalizations

Jonathan Leake

Technische Universität Berlin
February 18th, 2021

Outline

(1) Last time

- Matrix scaling
- Operator scaling
(2) Null-cone problem
- Motivation
- The moment map and moment polytope
- Connection to capacity
- Scaling-type algorithm
(3) Further questions

Outline

(1) Last time

- Matrix scaling
- Operator scaling
(2) Null-cone problem
- Motivation
- The moment map and moment polytope
- Connection to capacity
- Scaling-type algorithm
(3) Further questions

The matrix scaling problem

Let M be an $m \times n$ matrix with \mathbb{R}_{+}entries, and fix $\boldsymbol{r} \in \mathbb{R}_{+}^{m}$ and $\boldsymbol{c} \in \mathbb{R}_{+}^{n}$.
Definition: A scaling of M is given by multiplying M on the left and right by diagonal matrices with positive entries:

$$
\text { scaling }=A M B \quad \Longrightarrow \quad(A M B)_{i j}=a_{i i} m_{i j} b_{j j}
$$

Question: Given M, do there exist such A, B such that the row sums and column sums of $A M B$ are \boldsymbol{r} and \boldsymbol{c} respectively?

Sinkhorn's algorithm is a very simple iterative algorithm for M_{t}. For $r=\boldsymbol{c}=\mathbf{1}$ (doubly stochastic scaling), the algorithm is:
(1) Scale the columns so that col-sums $\left(M_{t+1}\right)=\mathbf{1}$.
(2) Scale the rows so that row-sums $\left(M_{t+2}\right)=1$ (changes col sums).
(3) Repeat iterations until M_{t} is almost doubly stochastic.

Keep track of $M_{t}=\cdots A_{6} A_{4} A_{2} M B_{1} B_{3} B_{5} \cdots$, which gives A and B.
Almost doubly sotchastic \Longrightarrow scalable to doubly stochastic.

Why do we care about matrix scaling?

Application: Deterministic approximation to the permanent. How?
Given an $n \times n$ matrix M, set $\boldsymbol{r}=\boldsymbol{c}=\mathbf{1}$. Suppose we have obtained the matrices A, B which scale M to the correct row/column sums.

Since $A M B$ is doubly stochastic, we can use van der Waerden bound:

$$
1 \geq \operatorname{per}(A M B) \geq \frac{n!}{n^{n}} \geq e^{-n} \quad\left(\text { e.g., recall } \operatorname{Cap}_{\mathbf{1}}(p) \geq p_{\mathbf{1}} \geq \frac{n!}{n^{n}} \operatorname{Cap}_{\mathbf{1}}(p)\right)
$$

Now: $\operatorname{per}(A M B)=\operatorname{det}(A) \operatorname{per}(M) \operatorname{det}(B)$.
Therefore: $[\operatorname{det}(A) \operatorname{det}(B)]^{-1} \geq \operatorname{per}(M) \geq e^{-n}[\operatorname{det}(A) \operatorname{det}(B)]^{-1}$.
This says that $\operatorname{det}(A B)^{-1}$ is an e^{n}-approximation to the permanent of M. (And a similar bound holds when $A M B$ close to doubly stochastic.)
[Linial-Samorodnitsky-Wigderson '00]: No capacity at the time, but the vdW bound was already proven by Egorychev and Falikman.

The LSW algorithm

Given M, want to compute A, B so that $A M B$ is almost doubly stochastic.
Main algorithm steps:
(1) Preprocessing: Scale to get M_{1} such that $\operatorname{per}\left(M_{1}\right) \geq \frac{1}{n^{n}}$.
(2) Sinkhorn: Apply iterative scaling until $\left\|\mathbf{1}-\boldsymbol{c}_{\boldsymbol{t}}\right\|_{2}$ is small.
(3) Approximation: M_{t} is close to doubly stochastic $\Longrightarrow \approx e^{n}$-approx.

Output: $A=A_{2} A_{4} A_{6} \cdots$ and $B=B_{1} B_{3} B_{5} \cdots$ and $\operatorname{per}(M) \approx \operatorname{det}(A B)^{-1}$.
Different "marginals": Similar algorithm given in [LSW '00].
General form of multiplicative iterative scaling algorithms:
(1) Lower bound: Only need "small" number of steps to get close to DS.
(2) Progress: Apply Sinkhorn until "marginals" close to DS.
(3) Approximation: Once close to DS, use vdW-type approximation.

This framework works in more general operator / tensor scaling setting.

The operator scaling problem

Let T be a linear operator from $m \times m$ matrices to $n \times n$ matrices which maps PSD matrices to PSD matrices.

Definition: A scaling of T is given by PD matrices A, B :
scaling $=A^{1 / 2} T\left(B^{1 / 2} X B^{1 / 2}\right) A^{1 / 2}, \quad$ another PSD-preserving operator.
Question: Given T, do there exist A, B to scale to "doubly stochastic"?
Doubly stochastic operator: $T\left(I_{m}\right)=I_{n}$ and $T^{*}\left(I_{n}\right)=I_{m}(\Longrightarrow m=n)$.
Translated to matrices: $M \cdot 1=1$ and $M^{*} \cdot 1=1$ (doubly stochastic).
Gurvits-Sinkhorn algorithm: Alternate scaling T and T^{*} :

$$
\cdots A_{3}^{1 / 2} A_{1}^{1 / 2} T\left(\cdots B_{4}^{1 / 2} B_{2}^{1 / 2} \times B_{2}^{1 / 2} B_{4}^{1 / 2} \cdots\right) A_{1}^{1 / 2} A_{3}^{1 / 2} \cdots
$$

The A_{i} matrices scale to $T\left(I_{n}\right)=I_{n}$, the B_{j} matrices scale to $\left.T^{*}\left(I_{n}\right)=I_{n}\right)$.

Why do we care about operator scaling?

Recall: T is almost scalable to DS iff rank-nondecreasing.
CP operator: $T(X)=\sum_{k=1}^{\ell} M_{k}^{*} X M_{k} \quad \Longrightarrow \quad T^{*}(X)=\sum_{k=1}^{\ell} M_{k} X M_{k}^{*}$.
Why do we care about rank non-decreasing? Equivalent properties (see [Garg-Gurvits-Oliveira-Wigderson '15], Theorem 1.4):
(1) $\operatorname{rank}(T(X)) \geq \operatorname{rank}(X)$ for all $X \succ 0$.
(2) For some B_{1}, \ldots, B_{ℓ}, the matrix $\sum_{k=1}^{\ell} B_{k} \otimes M_{k}$ is non-singular.
(3) For some d, the polynomial $\operatorname{det}\left(\sum_{k=1}^{\ell} X_{k} \otimes M_{k}\right)$ is not identically 0 where X_{k} is a $d \times d$ matrix of variables.
(9) The "polynomial" $\operatorname{Det}\left(\sum_{k=1}^{\ell} M_{k} x_{k}\right)$ is not identically 0 , where x_{1}, \ldots, x_{ℓ} are non-commuting variables (non-commutative "Det").
(0) The tuple $\left(M_{1}, \ldots, M_{\ell}\right)$ is not in null-cone of left-right action of $S L_{n}^{2}$.
\#4: (non-commutative) polynomial identity testing, (NC)PIT:
When is the determinant of a matrix of linear forms identically zero?
[Kabanets-Impagliazzo]: Poly-time PIT \Longrightarrow complexity lower bounds.

The general form of the algorithm

Recall the form, for some "measure of progress" μ :
(1) Preprocess: Scale to T_{1} such that $\mu\left(T_{1}\right) \geq e^{-\operatorname{poly}(n)}$.
(2) Iterations: Iterate poly (n) times, improving $\mu\left(T_{t}\right)$ multiplicatively by $1+\frac{1}{O(\text { poly }(n))}$ each time based on "closeness of marginals".
(3) Approximation: Once "marginals" are close to doubly stochastic, we can approximate / know T is almost scalable.

Matrix case: $\mu=$ permanent. Could have also used $\mu=$ Cap $_{1}$, since p is doubly stochastic iff $\operatorname{Cap}_{\mathbf{1}}(p)=1$ and $\operatorname{Cap}_{\mathbf{1}}(p) \leq 1$ otherwise.
Operator case: $\mu=$ matrix capacity, $\operatorname{Cap}(T):=\inf _{X \succ 0} \frac{\operatorname{det}(T(X))}{\operatorname{det}(X)}$.
[Gurvits '04]: The following are equivalent:
(1) $\operatorname{Cap}(T)>0$.
(2) T is rank non-decreasing.
(3) For all $\epsilon>0$, we have $T_{t}\left(I_{n}\right)=I_{n}$ and $\left\|T_{t}^{*}\left(I_{n}\right)-I_{n}\right\|_{F} \leq \epsilon$ for $t \gg 0$.
(9) For some t, we have $T_{t}\left(I_{n}\right)=I_{n}$ and $\left\|T_{t}^{*}\left(I_{n}\right)-I_{n}\right\|_{F} \leq \frac{1}{n+1}$.

Outline

(1) Last time

- Matrix scaling
- Operator scaling
(2) Null-cone problem
- Motivation
- The moment map and moment polytope
- Connection to capacity
- Scaling-type algorithm
(3) Further questions

The null-cone problem

Let $\pi: G \rightarrow \mathrm{GL}(V)$ be a representation of a group G (i.e., π is a group homomorphism and V is a vector space).

Definition: An orbit of $v \in V$ is the set $\mathcal{O}_{v}:=\{\pi(g) v: g \in G\} \subset V$. Definition: The null-cone of V or π is the set $\left\{v: 0 \in \overline{\mathcal{O}_{v}}\right\}$.
[Hilbert], [Mumford '65]: v is in the null-cone iff for every non-constant homogeneous G-invariant polynomial p on V we have $p(v)=0$.
E.g.: v in null-cone $\Longrightarrow \pi\left(g_{i}\right) v \rightarrow 0 \Longrightarrow p(v)=p\left(\pi\left(g_{i}\right) v\right)=p(0)=0$.
[Kempf-Ness '79]: v is not in the null-cone iff $\mu(w)=0$ for some $w \in \overline{\mathcal{O}_{v}}$, where μ is the moment map of π.

Moment map: Something like the "gradient" of the action of π at $g=\mathrm{id}$:

$$
" \mu(w)=\left.\nabla\right|_{X=0} \log \left\|\pi\left(e^{X}\right) w\right\| "
$$

Convex programming: $f=\|w\|$ attains minimum at w_{0} iff $\nabla f\left(w_{0}\right)=0$.

Why do we care about the null-cone problem?

Last slide: Given $\pi: G \rightarrow \mathrm{GL}(\mathrm{V})$, the null-cone is the set $\left\{v: 0 \in \overline{\mathcal{O}_{v}}\right\}$.
Operator scaling: Let $G=\mathrm{SL}_{n}^{2}(\mathbb{C})$ acting on $V=\left(\mathbb{C}^{n \times n}\right)^{\ell}$ given by

$$
\pi(g, h) \cdot\left(M_{1}, \ldots, M_{\ell}\right):=\left(g M_{1} h^{-1}, \ldots, g M_{\ell} h^{-1}\right)
$$

Recall (NC-PIT): $\left(M_{1}, \ldots, M_{\ell}\right)$ in null-cone iff $\operatorname{Det}\left(\sum_{k=1}^{\ell} M_{k} x_{k}\right) \equiv 0$.
Non-convex optimization: v in the null-cone iff $\inf _{g \in G}\|\pi(g) v\|=0$.
Other less obvious applications (see [BFGOWW '19]):

- Horn's problem: Given vectors $\alpha, \beta, \gamma \in \mathbb{R}^{n}$, are there Hermitian matrices A, B, C with these spectra such that $A+B+C=0$?
- Brascamp-Lieb: Given linear maps $A_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n_{i}}$ and $p_{1}, \ldots, p_{m}>0$, is there a finite constant C such that

$$
\int_{\mathbb{R}^{n}} \prod_{i} f_{i}\left(A_{i} x\right) d x \leq C \cdot \prod_{i}\left\|f_{i}\right\|_{1 / p_{i}}
$$

for all f_{i} ? Cauchy-Schwarz, Hölder, Loomis-Whitney, ...

The moment map and moment polytope

Throughout: Think $G=G L_{n}(\mathbb{C})$ or $G=\mathbb{T}^{n}$ with $\pi: G \rightarrow \operatorname{GL}(V)$.
Definition: The moment map $\mu(v)$ for $v \in V$ is defined via

$$
\langle H, \mu(v)\rangle:=\left.\partial_{t}\right|_{t=0} \log \left\|\pi\left(e^{t H}\right) v\right\|,
$$

and $\mu(v)$ is Hermitian for $G L_{n}(\mathbb{C})$ or a real (diagonal) vector for \mathbb{T}^{n}.
Idea: $\mu(v)$ is the "gradient" of $\log \left\|\pi\left(e^{X}\right) v\right\|$ at $X=0$.
Moment polytope: $\Delta(v):=\overline{\left\{\operatorname{eig}(\mu(w)): w \in \mathcal{O}_{v}\right\}}$ is a convex polytope. Kempf-Ness: v not in null-cone iff $\mu(w)=0$ for a $w \in \overline{\mathcal{O}_{v}}$ iff $\mathbf{0} \in \Delta(v)$. Recap: The following solve the same problem.
(1) Null-cone membership problem.
(2) Polytope membership problem (for $\boldsymbol{x}=\mathbf{0}$)
(3) Norm/gradient minimization problem
(9) Scaling problem: find $g \in G$ which minimizes $\|\pi(g) v\|$.
(3) Capacity minimization problem?

The commutative case: $G=\mathbb{T}^{n}=\left(\mathbb{C}^{\times}\right)^{n}$

Rep. theory: Commutative $G \Longrightarrow$ basis of simultaneous eigenvectors.
Further: Orthonormal basis v_{1}, \ldots, v_{n} such that $\pi(\boldsymbol{g}) v_{k}=\lambda_{k}(\boldsymbol{g}) v_{k}$ and:

$$
\lambda_{k}(\boldsymbol{g})=\boldsymbol{g}^{\boldsymbol{\omega}_{k}}:=\prod_{i=1}^{n} g_{i}^{\omega_{k, i}}
$$

where $\boldsymbol{\omega}_{k}$ are fixed integer vectors independent of \boldsymbol{g}.
Null-cone objective: $\|\pi(\boldsymbol{g}) v\|_{2}^{2}=\left\|\sum_{k=1}^{n} c_{k} v_{k} \boldsymbol{g}^{\omega_{k}}\right\|=\sum_{k=1}^{n}\left|c_{k}\right|^{2} \cdot|\boldsymbol{g}|^{2 \omega_{k}}$.
Optimization: $\inf _{\boldsymbol{g} \in \mathbb{T}}\|\pi(\boldsymbol{g}) v\|_{2}^{2}=\inf _{\boldsymbol{g} \in \mathbb{T}} \sum_{k=1}^{n}\left|c_{k}\right|^{2} \cdot|\boldsymbol{g}|^{2 \omega_{k}}=\inf _{x>0} \sum_{k=1}^{n}\left|c_{k}\right|^{2} \boldsymbol{x}^{2 \omega_{k}}$.
This is essentially capacity. Abusing notation: $\operatorname{Cap}_{0}\left(\sum_{k=1}^{n}\left|c_{k}\right|^{2} x^{2 \omega_{k}}\right)$.
So: Null-cone optimization becomes "polynomial capacity". What about moment map formulation (finding zero of gradient)?

The commutative case: $G=\mathbb{T}^{n}=\left(\mathbb{C}^{\times}\right)^{n}$

Last slide: $\|\pi(\boldsymbol{g}) v\|_{2}^{2}=\sum_{k=1}^{n}\left|c_{k}\right|^{2} \cdot|\boldsymbol{g}|^{2 \omega_{k}} \Longrightarrow$ "capacity" problem.
Moment map: $\langle\boldsymbol{y}, \mu(v)\rangle=\left.\partial_{t}\right|_{t=0} \log \left\|\pi\left(e^{t \boldsymbol{y}}\right) v\right\|$. We have:

$$
\left\langle\boldsymbol{e}_{j}, \mu(v)\right\rangle=\left.\partial_{t}\right|_{t=0} \log \sum_{k=1}^{n}\left|c_{k}\right|^{2} \cdot e^{2 t\left\langle\boldsymbol{e}_{j}, \omega_{k}\right\rangle}=\frac{\sum_{k=1}^{n}\left|c_{k}\right|^{2} \cdot 2 \omega_{k, j}}{\sum_{k=1}^{n}\left|c_{k}\right|^{2}}
$$

Therefore: $\mu(v)=\frac{\sum_{k=1}^{n}\left|c_{k}\right|^{2} \cdot 2 \omega_{k}}{\sum_{k=1}^{n}\left|c_{k}\right|^{2}} \Longrightarrow$ convex combination of $2 \omega_{k}$.
Further: Moment polytope $\Delta(v)=\overline{\left\{\mu(w): w \in \mathcal{O}_{v}\right\}}$ is precisely the "Newton" polytope of the "polynomial" $\|\pi(\boldsymbol{g}) v\|_{2}^{2}$. (c_{k} vary, but not $\boldsymbol{\omega}_{k}$)

Kempf-Ness: $\operatorname{Cap}_{\mathbf{0}}\left(\sum_{k=1}^{n}\left|c_{k}\right|^{2} \boldsymbol{x}^{2 \omega_{k}}\right)>0$ iff $\mathbf{0} \in \operatorname{Newt}\left(\sum_{k=1}^{n}\left|c_{k}\right|^{2} \boldsymbol{x}^{2 \omega_{k}}\right)$.
Already proven before via direct computation, entropy, etc. Also known in this case as Farkas' lemma.

Invariant-theoretic capacity

Last slide: $\inf _{g}\|\pi(g) v\|$ is a capacity problem in the commutative case. In more general cases, let's just make this the definition:

$$
\operatorname{Cap}_{0}(v):=\inf _{g \in G}\|\pi(g) v\|
$$

"Non-commutative" capacity, "invariant-theoretic" capacity, etc.
Also called non-commutative geometric programming since the commutative case captures unconstrained geometric programming (see [Bürgisser-Li-Nieuwboer-Walter '20]).

Kempf-Ness: $\operatorname{Cap}_{0}(v)>0$ iff $\mathbf{0}$ is in the moment polytope \Longrightarrow Generalization of the same statement for polynomial capacity.
Recall: $\inf _{\boldsymbol{y} \in \mathbb{R}^{n}} \log \sum_{k=1}^{n}\left|c_{k}\right|^{2} e^{\left\langle\boldsymbol{y}, 2 \omega_{k}\right\rangle}$ is a convex program. Can we do the same thing to non-commutative capacity?

Appears to be "no"... (but general capacity is still geodesically convex). Is there a scaling-type algorithm?

Scaling-type algorithm

Recall the form, for some "measure of progress" μ :
(1) Preprocess: Scale to T_{1} such that $\mu\left(T_{1}\right) \geq e^{-\operatorname{poly}(n)}$.
(2) Iterations: Iterate poly (n) times, improving $\mu\left(T_{t}\right)$ each time based on "closeness of marginals".
(3) Approximation: Once "marginals" are close to desired, we know T is almost scalable.

Now: $\mu=\mathrm{Cap}_{\mathbf{0}}$. Can we generalize this to the null-cone problem?
(1) "Preprocess": Set $g_{0}=\mathrm{id}$.
(2) Iterations: Geodesic gradient descent, Taylor approx, "trust-region" methods... I.e.: Natural analogs to convex Euclidean techniques.
(3) Approximation: How close do we need to get before stopping?

Approximation step is key to determine computational complexity.
Need: Relationship between value of capacity and norm of moment map.
This will heavily depend on the action π, the group G, etc.

Complexity of the action

Theorem [BFGOWW '19]: For $\|v\|=1$, we have

$$
1-\frac{\|\mu(v)\|}{\gamma(\pi)} \leq\left[\operatorname{Cap}_{0}(v)\right]^{2} \leq 1-\frac{\|\mu(v)\|^{2}}{4 N(\pi)^{2}}
$$

Corollary: $\mathbf{0} \in \Delta(v)$ iff $\Delta(v)$ contains a point smaller than $\gamma(\pi)$.
(This $\gamma(\pi)$ is how close we must get before stopping.)
Proof of corollary: (\Longrightarrow) Obvious. (\Longleftarrow) Kempf-Ness.
Definition: The weight norm $N(\pi)$ for $G=G L_{n}(\mathbb{C})$ is: $N(\pi):=\max _{U \subseteq V, \text { irreducible }}\left\|\boldsymbol{\lambda}_{U}\right\|$, where $\boldsymbol{\lambda}_{U}$ is highest weight vector of U.
Commutative case: $\boldsymbol{\lambda}_{U}$ are the simultaneous eigenvalue weights $\boldsymbol{\omega}_{k}$.
Definition: The weight margin $\gamma(\pi)$ is the minimum distance between $\mathbf{0}$ and any subset of the $\boldsymbol{\lambda}_{U}$'s whose convex hull does not contain $\mathbf{0}$.
Fun fact: For real stable polynomials and $\mathbf{1}$, the matroidal support condition implies the "weight margin" cannot be very small.

Weight margin examples

Last slide: The weight margin $\gamma(\pi)$ is the minimum distance between $\mathbf{0}$ and any subset of the $\boldsymbol{\lambda}_{U}$'s whose convex hull does not contain $\mathbf{0}$.

Matrix scaling: Action of $\left(\mathrm{ST}^{n}\right)^{2}$ via left-right action on matrices. $\gamma(\pi) \geq \frac{1}{\operatorname{poly}(n)}$ via [Linial-Samorodnitsky-Wigderson '00].

Operator scaling: Action of $\left(\mathrm{SL}_{n}(\mathbb{C})\right)^{2}$ on $\left(M_{1}, \ldots, M_{\ell}\right)$ via simultaneous left-right action. $\gamma(\pi) \geq \frac{1}{\text { poly(n) }}$ via [Gurvits '04], [GGOW '15].

Tensor scaling for 3-tensors: Action of $\left(\mathrm{GL}_{n}(\mathbb{C})\right)^{3}$ on 3-tensors. $\gamma(\pi) \leq 2^{-\operatorname{poly}(n)}$ via [Franks-Reichenbach '21] (the other day).

Last result: Negative result for this method. Open: Other methods?
Real stable polynomials formulation: Given a real stabnle polynomial with 1 not in its Newton polytope, how far away can Newton polytope be?

Outline

(1) Last time

- Matrix scaling
- Operator scaling
(2) Null-cone problem
- Motivation
- The moment map and moment polytope
- Connection to capacity
- Scaling-type algorithm
(3) Further questions

Further questions

How do we handle other points in the moment polytope besides $\mathbf{0}$?
Commutative case: Just change the denominator exponent in capacity. Non-commutative case [BFGOWW '19]: Need to "shift" all weight vectors: tensor π with another representation.

Entropic capacity: Is there any relation between entropic capacity and non-commutative capacity? (There is in the commutative case.)

Further: Connection to statistic via maximum likelihood, see [Améndola-Kohn-Reichenbach-Seigal '20]. Connection between all three?

Open: Does any connection give better algo for 3-tensors?

