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The matrix scaling problem
Let M be an m × n matrix with R+ entries, and fix r ∈ Rm

+ and c ∈ Rn
+.

Definition: A scaling of M is given by multiplying M on the left and
right by diagonal matrices with positive entries:

scaling = AMB =⇒ (AMB)ij = aiimijbjj .

Question: Given M, do there exist such A,B such that the row sums and
column sums of AMB are r and c respectively?

Sinkhorn’s algorithm is a very simple iterative algorithm for Mt . For
r = c = 1 (doubly stochastic scaling), the algorithm is:

1 Scale the columns so that col-sums(Mt+1) = 1.
2 Scale the rows so that row-sums(Mt+2) = 1 (changes col sums).
3 Repeat iterations until Mt is almost doubly stochastic.

Keep track of Mt = · · ·A6A4A2MB1B3B5 · · · , which gives A and B.

Almost doubly sotchastic =⇒ scalable to doubly stochastic.
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Why do we care about matrix scaling?

Application: Deterministic approximation to the permanent. How?

Given an n × n matrix M, set r = c = 1. Suppose we have obtained the
matrices A,B which scale M to the correct row/column sums.

Since AMB is doubly stochastic, we can use van der Waerden bound:

1 ≥ per(AMB) ≥ n!
nn ≥ e−n (e.g., recall Cap1(p) ≥ p1 ≥

n!
nn Cap1(p)).

Now: per(AMB) = det(A) per(M) det(B).

Therefore: [det(A) det(B)]−1 ≥ per(M) ≥ e−n [det(A) det(B)]−1 .

This says that det(AB)−1 is an en-approximation to the permanent of M.
(And a similar bound holds when AMB close to doubly stochastic.)

[Linial-Samorodnitsky-Wigderson ’00]: No capacity at the time, but
the vdW bound was already proven by Egorychev and Falikman.
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The LSW algorithm

Given M, want to compute A,B so that AMB is almost doubly stochastic.

Main algorithm steps:
1 Preprocessing: Scale to get M1 such that per(M1) ≥ 1

nn .
2 Sinkhorn: Apply iterative scaling until ‖1− ct‖2 is small.
3 Approximation: Mt is close to doubly stochastic =⇒ ≈ en-approx.

Output: A = A2A4A6 · · · and B = B1B3B5 · · · and per(M) ≈ det(AB)−1.

Different “marginals”: Similar algorithm given in [LSW ’00].

General form of multiplicative iterative scaling algorithms:
1 Lower bound: Only need “small” number of steps to get close to DS.
2 Progress: Apply Sinkhorn until “marginals” close to DS.
3 Approximation: Once close to DS, use vdW-type approximation.

This framework works in more general operator / tensor scaling setting.
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The operator scaling problem

Let T be a linear operator from m ×m matrices to n × n matrices which
maps PSD matrices to PSD matrices.

Definition: A scaling of T is given by PD matrices A,B:

scaling = A1/2T (B1/2XB1/2)A1/2, another PSD-preserving operator.

Question: Given T , do there exist A,B to scale to “doubly stochastic”?

Doubly stochastic operator: T (Im) = In and T ∗(In) = Im ( =⇒ m = n).

Translated to matrices: M · 1 = 1 and M∗ · 1 = 1 (doubly stochastic).

Gurvits-Sinkhorn algorithm: Alternate scaling T and T ∗:

· · ·A1/2
3 A1/2

1 T
(
· · ·B1/2

4 B1/2
2 X B1/2

2 B1/2
4 · · ·

)
A1/2

1 A1/2
3 · · ·

The Ai matrices scale to T (In) = In, the Bj matrices scale to T ∗(In) = In).
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Why do we care about operator scaling?
Recall: T is almost scalable to DS iff rank-nondecreasing.

CP operator: T (X ) =
∑̀
k=1

M∗k X Mk =⇒ T ∗(X ) =
∑̀
k=1

Mk X M∗k .

Why do we care about rank non-decreasing? Equivalent properties
(see [Garg-Gurvits-Oliveira-Wigderson ’15], Theorem 1.4):

1 rank(T (X )) ≥ rank(X ) for all X � 0.
2 For some B1, . . . ,B`, the matrix

∑`
k=1 Bk ⊗Mk is non-singular.

3 For some d , the polynomial det
(∑`

k=1 Xk ⊗Mk
)

is not identically 0
where Xk is a d × d matrix of variables.

4 The “polynomial” Det
(∑`

k=1 Mkxk
)

is not identically 0, where
x1, . . . , x` are non-commuting variables (non-commutative “Det”).

5 The tuple (M1, . . . ,M`) is not in null-cone of left-right action of SL2
n.

#4: (non-commutative) polynomial identity testing, (NC)PIT:
When is the determinant of a matrix of linear forms identically zero?
[Kabanets-Impagliazzo]: Poly-time PIT =⇒ complexity lower bounds.
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The general form of the algorithm
Recall the form, for some “measure of progress” µ:

1 Preprocess: Scale to T1 such that µ(T1) ≥ e−poly(n).
2 Iterations: Iterate poly(n) times, improving µ(Tt) multiplicatively by

1 + 1
O(poly(n)) each time based on “closeness of marginals”.

3 Approximation: Once “marginals” are close to doubly stochastic, we
can approximate / know T is almost scalable.

Matrix case: µ = permanent. Could have also used µ = Cap1, since p is
doubly stochastic iff Cap1(p) = 1 and Cap1(p) ≤ 1 otherwise.

Operator case: µ = matrix capacity, Cap(T ) := inf
X�0

det(T (X ))
det(X ) .

[Gurvits ’04]: The following are equivalent:
1 Cap(T ) > 0.
2 T is rank non-decreasing.
3 For all ε > 0, we have Tt(In) = In and ‖T ∗t (In)− In‖F ≤ ε for t � 0.
4 For some t, we have Tt(In) = In and ‖T ∗t (In)− In‖F ≤ 1

n+1 .
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The null-cone problem
Let π : G → GL(V ) be a representation of a group G (i.e., π is a group
homomorphism and V is a vector space).

Definition: An orbit of v ∈ V is the set Ov := {π(g)v : g ∈ G} ⊂ V .

Definition: The null-cone of V or π is the set {v : 0 ∈ Ov}.

[Hilbert], [Mumford ’65]: v is in the null-cone iff for every non-constant
homogeneous G-invariant polynomial p on V we have p(v) = 0.

E.g.: v in null-cone =⇒ π(gi )v → 0 =⇒ p(v) = p(π(gi )v) = p(0) = 0.

[Kempf-Ness ’79]: v is not in the null-cone iff µ(w) = 0 for some
w ∈ Ov , where µ is the moment map of π.

Moment map: Something like the “gradient” of the action of π at g = id:

“µ(w) = ∇|X=0 log ‖π(eX )w‖”.

Convex programming: f = ‖w‖ attains minimum at w0 iff ∇f (w0) = 0.
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Why do we care about the null-cone problem?
Last slide: Given π : G → GL(V), the null-cone is the set {v : 0 ∈ Ov}.

Operator scaling: Let G = SL2
n(C) acting on V = (Cn×n)` given by

π(g , h) · (M1, . . . ,M`) := (gM1h−1, . . . , gM`h−1).

Recall (NC-PIT): (M1, . . . ,M`) in null-cone iff Det
(∑`

k=1 Mkxk
)
≡ 0.

Non-convex optimization: v in the null-cone iff infg∈G ‖π(g)v‖ = 0.

Other less obvious applications (see [BFGOWW ’19]):
Horn’s problem: Given vectors α,β,γ ∈ Rn, are there Hermitian
matrices A,B,C with these spectra such that A + B + C = 0?
Brascamp-Lieb: Given linear maps Ai : Rn → Rni and
p1, . . . , pm > 0, is there a finite constant C such that∫

Rn

∏
i

fi (Aix)dx ≤ C ·
∏

i
‖fi‖1/pi

for all fi ? Cauchy-Schwarz, Hölder, Loomis-Whitney, ...
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The moment map and moment polytope
Throughout: Think G = GLn(C) or G = Tn with π : G → GL(V ).

Definition: The moment map µ(v) for v ∈ V is defined via

〈H, µ(v)〉 := ∂t |t=0 log ‖π(etH)v‖,

and µ(v) is Hermitian for GLn(C) or a real (diagonal) vector for Tn.

Idea: µ(v) is the “gradient” of log ‖π(eX )v‖ at X = 0.

Moment polytope: ∆(v) := {eig(µ(w)) : w ∈ Ov} is a convex polytope.

Kempf-Ness: v not in null-cone iff µ(w) = 0 for a w ∈ Ov iff 0 ∈ ∆(v).

Recap: The following solve the same problem.
1 Null-cone membership problem.
2 Polytope membership problem (for x = 0)
3 Norm/gradient minimization problem
4 Scaling problem: find g ∈ G which minimizes ‖π(g)v‖.
5 Capacity minimization problem?
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The commutative case: G = Tn = (C×)n

Rep. theory: Commutative G =⇒ basis of simultaneous eigenvectors.

Further: Orthonormal basis v1, . . . , vn such that π(g)vk = λk(g)vk and:

λk(g) = gωk :=
n∏

i=1
gωk,i

i ,

where ωk are fixed integer vectors independent of g .

Null-cone objective: ‖π(g)v‖22 =
∥∥∥∥∥

n∑
k=1

ckvkgωk

∥∥∥∥∥ =
n∑

k=1
|ck |2 · |g |2ωk .

Optimization: inf
g∈T
‖π(g)v‖22 = inf

g∈T

n∑
k=1
|ck |2 · |g |2ωk = inf

x>0

n∑
k=1
|ck |2x2ωk .

This is essentially capacity. Abusing notation: Cap0
(∑n

k=1 |ck |2x2ωk
)
.

So: Null-cone optimization becomes “polynomial capacity”. What about
moment map formulation (finding zero of gradient)?
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The commutative case: G = Tn = (C×)n

Last slide: ‖π(g)v‖22 =
∑n

k=1 |ck |2 · |g |2ωk =⇒ “capacity” problem.

Moment map: 〈y , µ(v)〉 = ∂t |t=0 log ‖π(ety )v‖. We have:

〈ej , µ(v)〉 = ∂t |t=0 log
n∑

k=1
|ck |2 · e2t〈ej ,ωk〉 =

∑n
k=1 |ck |2 · 2ωk,j∑n

k=1 |ck |2
.

Therefore: µ(v) =
∑n

k=1 |ck |2·2ωk∑n
k=1 |ck |2

=⇒ convex combination of 2ωk .

Further: Moment polytope ∆(v) = {µ(w) : w ∈ Ov} is precisely the
“Newton” polytope of the “polynomial” ‖π(g)v‖22. (ck vary, but not ωk)

Kempf-Ness: Cap0
(∑n

k=1 |ck |2x2ωk
)
> 0 iff 0 ∈ Newt

(∑n
k=1 |ck |2x2ωk

)
.

Already proven before via direct computation, entropy, etc. Also known in
this case as Farkas’ lemma.
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Invariant-theoretic capacity
Last slide: infg ‖π(g)v‖ is a capacity problem in the commutative case.

In more general cases, let’s just make this the definition:

Cap0(v) := inf
g∈G
‖π(g)v‖.

“Non-commutative” capacity, “invariant-theoretic” capacity, etc.

Also called non-commutative geometric programming since the
commutative case captures unconstrained geometric programming (see
[Bürgisser-Li-Nieuwboer-Walter ’20]).

Kempf-Ness: Cap0(v) > 0 iff 0 is in the moment polytope =⇒
Generalization of the same statement for polynomial capacity.

Recall: infy∈Rn log
∑n

k=1 |ck |2e〈y ,2ωk〉 is a convex program. Can we do
the same thing to non-commutative capacity?

Appears to be “no”... (but general capacity is still geodesically convex).
Is there a scaling-type algorithm?
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Scaling-type algorithm
Recall the form, for some “measure of progress” µ:

1 Preprocess: Scale to T1 such that µ(T1) ≥ e−poly(n).
2 Iterations: Iterate poly(n) times, improving µ(Tt) each time based

on “closeness of marginals”.
3 Approximation: Once “marginals” are close to desired, we know T is

almost scalable.

Now: µ = Cap0. Can we generalize this to the null-cone problem?
1 “Preprocess”: Set g0 = id.
2 Iterations: Geodesic gradient descent, Taylor approx, “trust-region”

methods... I.e.: Natural analogs to convex Euclidean techniques.
3 Approximation: How close do we need to get before stopping?

Approximation step is key to determine computational complexity.

Need: Relationship between value of capacity and norm of moment map.

This will heavily depend on the action π, the group G , etc.
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Complexity of the action
Theorem [BFGOWW ’19]: For ‖v‖ = 1, we have

1− ‖µ(v)‖
γ(π) ≤ [Cap0(v)]2 ≤ 1− ‖µ(v)‖2

4N(π)2 .

Corollary: 0 ∈ ∆(v) iff ∆(v) contains a point smaller than γ(π).
(This γ(π) is how close we must get before stopping.)
Proof of corollary: ( =⇒ ) Obvious. (⇐= ) Kempf-Ness.

Definition: The weight norm N(π) for G = GLn(C) is:

N(π) := max
U⊆V , irreducible

‖λU‖, where λU is highest weight vector of U.

Commutative case: λU are the simultaneous eigenvalue weights ωk .

Definition: The weight margin γ(π) is the minimum distance between 0
and any subset of the λU ’s whose convex hull does not contain 0.
Fun fact: For real stable polynomials and 1, the matroidal support
condition implies the “weight margin” cannot be very small.
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Weight margin examples

Last slide: The weight margin γ(π) is the minimum distance between 0
and any subset of the λU ’s whose convex hull does not contain 0.

Matrix scaling: Action of (STn)2 via left-right action on matrices.
γ(π) ≥ 1

poly(n) via [Linial-Samorodnitsky-Wigderson ’00].

Operator scaling: Action of (SLn(C))2 on (M1, . . . ,M`) via simultaneous
left-right action. γ(π) ≥ 1

poly(n) via [Gurvits ’04], [GGOW ’15].

Tensor scaling for 3-tensors: Action of (GLn(C))3 on 3-tensors.
γ(π) ≤ 2−poly(n) via [Franks-Reichenbach ’21] (the other day).

Last result: Negative result for this method. Open: Other methods?

Real stable polynomials formulation: Given a real stabnle polynomial
with 1 not in its Newton polytope, how far away can Newton polytope be?
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Further questions

How do we handle other points in the moment polytope besides 0?

Commutative case: Just change the denominator exponent in capacity.

Non-commutative case [BFGOWW ’19]: Need to “shift” all weight
vectors: tensor π with another representation.

Entropic capacity: Is there any relation between entropic capacity and
non-commutative capacity? (There is in the commutative case.)

Further: Connection to statistic via maximum likelihood, see
[Améndola-Kohn-Reichenbach-Seigal ’20]. Connection between all
three?

Open: Does any connection give better algo for 3-tensors?
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