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Notation

Polynomial notation:
R,R+,Z+ := reals, non-negative reals, non-negative integers.
xµ :=

∏
i xµi

i and µ ≤ λ is entrywise.
R[x] := v.s. of real polynomials in n variables.
R+[x] := v.s. of real polynomials with non-negative coefficients.
Rλ[x] := v.s. of polynomials of degree at most λi in xi .
For p ∈ R[x], we write p(x) =

∑
µ pµxµ.

For d-homogeneous p ∈ R[x], we write p(x) =
∑
|µ|=d pµxµ.

d
dx = ∂

∂x = ∂x := derivative with respect to x , and ∂µx :=
∏

i ∂
µixi .

supp(p) = support of p = the set of µ ∈ Zn
+ for which pµ 6= 0.

Newt(p) = Newton polytope of p = convex hull of the support of p
as a subset of Rn.
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Recall: The big three

The geometry of polynomials is generally an investigation of the
connections between the various properties of polynomials:

Algebraic, via the roots/zeros of the polynomial.
Combinatorial, via the coefficients of the polynomial.
Analytic, via the evaluations of the polynomial.

Why do we care? We use features of the interplay between these three
to prove facts about mathematical objects which a priori have nothing to
do with polynomials.

Typical method:
1 Encode some object as a polynomial which has some nice properties.
2 Apply operations to that polynomial which preserve those properties.
3 Extract information at the end which relates back to the object.
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The permanent

Permanent of a matrix A = (aij)n
i ,j=1:

per(A) =
∑
σ∈Sn

n∏
i=1

ai ,σ(i).

Barvinok: “Like the determinant, only simpler.”

Determinant: Compute exactly in poly(n) time.
Permanent: #P-hard to compute exactly, even for 0-1 matrices.

The 0-1 matrix case is equivalent to counting perfect matchings of a
bipartite graph. (In a few slides.)

Searching for a perfect matching can be done in polynomial time, unlike
counting which is #P-hard.
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Polynomial coefficients
Connect to polynomials? Given A with R+ entries, define:

pA(x) :=
n∏

i=1

n∑
j=1

aijxj =
n∏

i=1
(ai1x1 + · · ·+ ainxn) ∈ R+[x1, . . . , xn].

Properties:
Homogeneous polynomial of degree n in n variables.
pA is a product of non-negative linear forms =⇒ pA is real stable.
Coefficient of x1x2 · · · xn is equal to per(A). Why? This coefficient
corresponds to summing over all ways to choose distinct variables
from each linear form.
per(A) = ∂x1∂x2 · · · ∂xn pA = ∂x1 |x1=0 ∂x2 |x2=0 · · · ∂xn |xn=0 pA.

Last one: Gives us a way to induct on n-homogeneous polynomials in n
variables, even though ∂xn |xn=0 pA is not equal to pB for some B.

Compare: Contraction of a matroid ⇐⇒ corresponding operation on A?
Jonathan Leake (TU Berlin) Capacity and Gurvits’ Theorem Winter 2020-2021 7 / 25



Bipartite perfect matchings

Let G be a bipartite graph on 2n vertices and consider:

Bipartite adjacency matrix, A:
1 1 0 1
1 0 1 1
1 1 1 0
0 1 1 1


# perfect matchings = permanent
d-regular ⇐⇒ rows = cols = d

# perfect matchings of G = permanent of A = ∂x1 |x1=0 · · · ∂xn |xn=0 pA.

Existence of perfect matching of G ⇐⇒ Permanent of A is > 0.
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Regular graphs and doubly stochastic matrices
Special case: d-regular graph G ⇐⇒ degree of every vertex is d .

Adjacency matrix of regular graph: All row/column sums equal to d .

Doubly stochastic (DS) matrix: Non-negative entries, and all row and
column sums equal to 1.

Birkhoff polytope: Set of all doubly stochastic matrices. The extreme
points are the permutation matrices.

∃ perfect matching of G ⇐⇒ per(A) > 0
⇐⇒ max[A · X ] > n − 1 over Birkhoff polytope.

Two questions:
1 What can we say about the permanent/# perfect matchings for

doubly stochastic A or d-regular G?
2 What can we say about the polynomial pA for doubly stochastic A?
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Van der Waerden “conjecture”
“Conjecture” [Falikman, Egorychev ’81]: If A is doubly stochastic, then

per(A) ≥ n!
nn ≈

√
2πn · e−n.

Worst-case: A = 1
n Jn, where Jn is the all-ones matrix =⇒ per(A) = n!

nn .

Corollary: #pm(G) ≥ dn · n!
nn for d-regular G .

Original proofs: Relied on Alexandrov-Fenchel inequalities (good sign for
us), but pretty complicated. Better/more illuminating proof?

Algorithmic implications:
1 Also know that per(A) ≤ 1 for any DS A (exercise).
2 Therefore, n!

nn is an en-approximation to per(A) for any DS A.
3 Iterative procedure to “scale” a non-negative entry matrix to DS:

en-approximation to per(A) [Linial-Samorodnitsky-Wigderson ’00].
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Doubly stochastic polynomials
Gurvits: Let’s get the stable polynomial pA in the mix:

pA(x) :=
n∏

i=1
(ai1x1 + ai2x2 + · · ·+ ainxn) =

n∏
i=1

n∑
j=1

aijxj .

Properties of pA for doubly stochastic A:
Row sums = 1 =⇒ pA(1) = 1.
Row/column sums = 1 =⇒ ∇pA(1) = 1. Why? Product rule:

∂x1pA(1) =
n∑

k=1
ak1

∏
i 6=k

(ai1 · 1 + ai2 · 1 + · · ·+ ain · 1) =
n∑

k=1
ak1 = 1.

Already know: Coefficient of x1x2 · · · xn equals per(A).

Doubly stochastic polynomial: p(1) = 1 and ∇p(1) = 1.

New conjecture: All-ones coefficient of stable DS polynomial ≥ n!
nn .

Polynomial is easy to evaluate, but it’s #P-hard to compute coefficients.
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Polynomial capacity
Definition: Given p ∈ R+[x] and α ∈ Rn

+ (always from now on), define:

Capα(p) := inf
x>0

p(x)
xα = inf

x1,...,xn>0

p(x1, . . . , xn)
xα1

1 xα2
2 · · · x

αnn
.

First: For µ ∈ supp(p), we have

Capµ(p) = inf
x>0

p(x)
xµ ≥ inf

x>0

pµxµ
xµ = pµ.

Maybe: Cap1(p) is a good approximation to p1 (all-ones coefficient).

So what? Cap1(p) looks hard to compute in any case. Actually:

log Capα(p) = inf
y∈Rn

[
−〈y ,α〉+ log

∑
µ

pµe〈y ,µ〉
]

via x → ey .

Since pµ > 0, this is a convex program. (Or: geometric programming.)

Compute via: Ellipsoid method, interior point method, etc.
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Properties of polynomial capacity: Newton polytope
Last slide: “Something like” the coefficients of p; efficiently computable.

Crucial connection: Polynomial capacity and AM-GM inequality,

ω1x1 + ω2xn + · · ·+ ωnxn ≥ xω1
1 xω2

2 · · · x
ωn
n ,

where x,ω ∈ Rn
+ and

∑
i ωi = 1.

Fact: 0 < Capα(p) = infx>0
p(x)
xα if and only if α ∈ Newt(p).

Proof of (⇐= ): Since α ∈ Newt(p), there is a convex combination:

α =
∑
µ∈S

cµµ with S ⊂ supp(p) and cµ > 0 and
∑
µ∈S

cµ = 1.

For any x > 0, we now apply AM-GM:

p(x) ≥
∑
µ∈S

pµxµ =
∑
µ∈S

cµ
(

pµxµ
cµ

)
≥
∏
µ∈S

(
pµxµ

cµ

)cµ

≥
(

min
µ∈S

pµ
cµ

)
xα.
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Properties of polynomial capacity: Newton polytope

Fact: 0 < Capα(p) = infx>0
p(x)
xα if and only if α ∈ Newt(p).

Proof of ( =⇒ ): We prove the contrapositive. Let’s rewrite capacity as

Capα(p) = inf
x>0

p(x)
xα = inf

y∈Rn

∑
µ∈supp(p)

pµe〈y ,µ−α〉.

α 6∈ Newt(p) ⇐⇒ µ−α in the same open half-space for all µ ⇐⇒
existence of y such that 〈y ,µ−α〉 < 0 for all µ ∈ supp(p).
So: Scale this y larger and larger to limit to 0.

Key idea: Separating hyperplane for Newton polytope.

Conceptual conclusion: Capacity “picks out” a polytope, and is related
to algorithmic/optimization questions concerning the polytope.
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Properties of polynomial capacity: Marginals
Fix p ∈ R+[x] such that p(1) = 1. Define a probability distribution νp:

P[w = µ] = pµ where w ∼ νp.

That is: νp is distributed on Zn according to the coefficients/support of p.

Marginal probabilities (“marginals”) are coordinates of the expectation:

E[w ] =
∑

µ∈supp(p)
pµ · µ where w ∼ νp.

In fact, the i th marginal of νp can be written as

E[wi ] =
∑
µ

pµµi = ∂xi

∑
µ

pµxµ
∣∣∣∣∣
x=1

= ∂xi p(1).

That is: Marginals of νp = ∇p(1).

Fact: A polynomial p is doubly stochastic iff the marginals of νp are 1.
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Properties of polynomial capacity: Marginals
Easy: If p(1) = 1, then 0 ≤ Capα(p) ≤ 1 for all α.

Proof: Capα(p) = inf
x>0

p(x)
xα ≤

p(1)
1α = 1.

Recall: 0 < Capα(p) iff α ∈ Newt(p).

Fact: If p(1) = 1, then Capα(p) = 1 iff α are the marginals of p (of νp).
Proof: Recall that we have

0 ≥ log Capα(p) = inf
y∈Rn

[
−〈y ,α〉+ log

∑
µ

pµe〈y ,µ〉
]

=: inf
y∈Rn

F (y).

Now, compute the gradient of the convex objective at y = 0:

∂yi F (y)|y=0 = −αi +
∂yi

∑
µ pµe〈y ,µ〉∑

µ pµe〈y ,µ〉

∣∣∣∣∣
y=0

= −αi + ∂xi p(1)
p(1) .

So marginals = α iff ∇F (y)|y=0 = 0 iff infimum attained at F (0) = 0.
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Recap of capacity properties

For p ∈ R+[x] = R+[x1, . . . .xn] and α ∈ Rn
+, we write:

Capα(p) := inf
x>0

p(x)
xα .

Properties for p(1) = 1:
0 ≤ Capα(p) ≤ 1.
0 < Capα(p) iff α ∈ Newt(p).
Capα(p) = 1 iff α = ∇p(1).
p is doubly stochastic iff Cap1(p) = 1.
If row sums are 1, then A is doubly stochastic iff Cap1(pA) = 1.
For µ ∈ supp(p), we have pµ ≤ Capµ(p).

Can we use these properties (especially the last three) to prove the Van
der Waerden lower bound for doubly stochastic matrices/polynomials?
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Gurvits’ theorem

Theorem (Gurvits ’05)
If p ∈ R+[x] is an n-homogeneous n-variate real stable polynomial, then:

Cap1

(
∂xn p|xn=0

)
≥
(n − 1

n

)n−1
Cap1(p).

Here the length of 1 depends on the input polynomial, and 00 = 1.

Note: Length of 1 depends on the number of variables. So:

Cap1(p) = inf
x>0

p(x)
x1x2 · · · xn

but Cap1

(
∂xn p|xn=0

)
= inf

x>0

∂xn p(x)
x1x2 · · · xn−1

.

Further: What about when n = 1?

Cap1

(
∂x1p|x1=0

)
= inf

x>0

p1∏0
i=1 xi

= p1 = const.

Jonathan Leake (TU Berlin) Capacity and Gurvits’ Theorem Winter 2020-2021 20 / 25



Gurvits’ theorem and the Van der Waerden bound

Theorem: For real stable n-homogeneous p ∈ R+[x], we have

Cap1

(
∂xn p|xn=0

)
≥
(n − 1

n

)n−1
Cap1(p).

Corollary: p1 ≥ n!
nn (VdW bound) holds for doubly stochastic real stable p.

Proof: Since ∂xn p|xn=0 is (n− 1)-homogeneous (n− 1)-variate real stable,
we can apply the theorem inductively. E.g.:

Cap1

(
∂xn−1

∣∣
xn−1=0 ∂xn |xn=0 p

)
≥
(n − 2

n − 1

)n−2
Cap1

(
∂xn p|xn=0

)
.

This leads to:

Cap1

(
∂x1 |x1=0 · · · ∂xn |xn=0 p

)
≥
(1

2

)1 (2
3

)2
· · ·
(n − 1

n

)n−1
Cap1(p).
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Gurvits’ theorem and the Van der Waerden bound
Last slide: p doubly stochastic real stable, and

Cap1

(
∂x1 |x1=0 · · · ∂xn |xn=0 p

)
≥
(1

2

)1 (2
3

)2
· · ·
(n − 1

n

)n−1
Cap1(p).

First: Since p is doubly stochastic, we have Cap1(p) = 1.

Next, let’s simplify the constant:(1
2

)1 (2
3

)2
· · ·
(n − 1

n

)n−1
= 1 · 2 · 3 · · · (n − 1)

nn−1 = n!
nn .

Finally, what is Cap1

(
∂x1 |x1=0 · · · ∂xn |xn=0 p

)
?

Recall: Length of 1 determined by input, a constant polynomial. So:

Cap1

(
∂x1 |x1=0 · · · ∂xn |xn=0 p

)
= inf

x>0

p1∏0
i=1 x1

i
= p1.

Therefore: p1 ≥ n!
nn Cap1(p) = n!

nn =⇒ per(A) ≥ n!
nn for DS A.
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Gurvits’ theorem and non-DS matrices

Last slides: Simple proof of the VdW bound with Gurvits’ theorem.

Interesting: Proof utilized optimization problem Cap1(p), but no
computation was actually needed.

Next: Remove DS condition. Proof still goes through, but Cap1(p) 6= 1.

Corollary: If p ∈ R+[x1, . . . , xn] is n-homogeneous real stable, then

p1 ≥
n!
nn Cap1(p) ≥ e−n · Cap1(p).

Recall: Cap1(p) ≥ p1 in general.

Corollary: “Convex” program Cap1(p) gives an en-approximation to p1,
given an evaluation oracle for p.

Corollary: Convex program for en-approximating the permanent of a
matrix with R+ entries.

Jonathan Leake (TU Berlin) Capacity and Gurvits’ Theorem Winter 2020-2021 23 / 25



Proof of Gurvits’ theorem

Theorem (Gurvits ’05)
If p ∈ R+[x] is an n-homogeneous n-variate real stable polynomial, then:

Cap1

(
∂xn p|xn=0

)
≥
(n − 1

n

)n−1
Cap1(p).

Here the length of 1 depends on the input polynomial, and 00 = 1.

Proof idea: Want to show

inf
x>0

∂xn p(x1, . . . , xn−1, 0)
x1x2 · · · xn−1

≥
(n − 1

n

)n−1
· inf

x>0

p(x1, . . . , xn−1, xn)
x1x2 · · · xn−1xn

.

Enough: For all x1, . . . , xn−1 > 0 and q(t) := p(x1, . . . , xn−1, t), we have

q1 = ∂tq(0) ≥
(n − 1

n

)n−1
· inf

t>0

q(t)
t =

(n − 1
n

)n−1
Cap1(q).

Boils down to a univariate coefficient bound for real-rooted q ∈ Rn
+[t].
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Foreshadowing: The univariate coefficient bound

Recall we want: q1 ≥
(n − 1

n

)n−1
Cap1(q).

Lemma (Brändén-L-Pak ’20)

Let q,w ∈ Rn
+[t] have all positive coefficients such that

(
qk
wk

)n

k=0
forms a

log-concave sequence. Then for all k ∈ {0, . . . , n}, we have

qk
Capk(q) ≥

wk
Capk(w) .

We will prove this next time. How can we use it? Setting wk =
(n

k
)

translates to qk being ultra log-concave. For k = 1, we obtain

q1 ≥
n

Cap1(w) ·Cap1(q) and Cap1(w) = inf
t>0

(t + 1)n

t = n
( n

n − 1

)n−1

where the last equality is a basic calculus exercise.
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