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Polynomial notation:

R,R4,Z; := reals, non-negative reals, non-negative integers.
xP = T[; x!" and p < A'is entrywise.

R[x] := v.s. of real polynomials in n variables.

R4 [x] := v.s. of real polynomials with non-negative coefficients.
RA[x] := v.s. of polynomials of degree at most \; in x;.

For p € R[x], we write p(x) = -, pux*.

For d-homogeneous p € R[x], we write p(x) = > u|=d Pux".

d% = a% = Oy := derivative with respect to x, and 9% =[], 9%
supp(p) = support of p = the set of u € Z for which p,, # 0.

Newt(p) = Newton polytope of p = convex hull of the support of p
as a subset of R".
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Recall: The big three

The geometry of polynomials is generally an investigation of the
connections between the various properties of polynomials:

e Algebraic, via the roots/zeros of the polynomial.
o Combinatorial, via the coefficients of the polynomial.

@ Analytic, via the evaluations of the polynomial.

Why do we care? We use features of the interplay between these three
to prove facts about mathematical objects which a priori have nothing to
do with polynomials.

Typical method:
© Encode some object as a polynomial which has some nice properties.
@ Apply operations to that polynomial which preserve those properties.
© Extract information at the end which relates back to the object.
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@ Motivation
@ The permanent of a matrix with non-negative entries
@ The Van der Waerden “conjecture”
@ Doubly stochastic polynomials

© Polynomial capacity
@ Definition
@ Properties of capacity: Newton polytope
@ Properties of capacity: Marginal probabilities

© Gurvits' theorem
@ Statement of the theorem
@ The Van der Waerden bound
@ Beyond doubly stochastic matrices/polynomials
@ "Proof” of Gurvits' theorem
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Outline

@ Motivation
@ The permanent of a matrix with non-negative entries
@ The Van der Waerden “conjecture”
@ Doubly stochastic polynomials
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The permanent

Permanent of a matrix A = (a;)7,_;:
n
per(A) = > ] ai.0()-
o€S, i=1

Barvinok: “Like the determinant, only simpler.”

Determinant: Compute exactly in poly(n) time.
Permanent: #P-hard to compute exactly, even for 0-1 matrices.

The 0-1 matrix case is equivalent to counting perfect matchings of a
bipartite graph. (In a few slides.)

Searching for a perfect matching can be done in polynomial time, unlike
counting which is #P-hard.
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Polynomial coefficients

Connect to polynomials? Given A with R entries, define:

n n n
pa(x) := H Z ajjxj = H (aizx1 + -+ + ainxn) € Ry[x1, ..., x|
i=1j=1 i=1
Properties:
@ Homogeneous polynomial of degree n in n variables.
@ pp is a product of non-negative linear forms = pj4 is real stable.

o Coefficient of x1xa - - - xp, is equal to per(A). Why? This coefficient
corresponds to summing over all ways to choose distinct variables
from each linear form.

o per(A) = 0y, 0x, -+ Ox,pa = Ox ’)q:O 8X2‘X2:o T 6Xn‘x,,:0 PA.

Last one: Gives us a way to induct on n-homogeneous polynomials in n
variables, even though 8Xn‘x,,=0 pa is not equal to pg for some B.

Compare: Contraction of a matroid <= corresponding operation on A?
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Bipartite perfect matchings

Let G be a bipartite graph on 2n vertices and consider:

Bipartite adjacency matrix, A:

1
0
1
1

O = = =
= == O
—_ O =

# perfect matchings = permanent
d-regular <= rows = cols = d

# perfect matchings of G = permanent of A = Oy [,,_o " Ox,l,,—0 PA-

Existence of perfect matching of G <= Permanent of A is > 0.
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Regular graphs and doubly stochastic matrices

Special case: d-regular graph G <= degree of every vertex is d.
Adjacency matrix of regular graph: All row/column sums equal to d.

Doubly stochastic (DS) matrix: Non-negative entries, and all row and
column sums equal to 1.

Birkhoff polytope: Set of all doubly stochastic matrices. The extreme
points are the permutation matrices.

3 perfect matching of G <= per(A) >0
<= max[A- X] > n— 1 over Birkhoff polytope.

Two questions:

© What can we say about the permanent/# perfect matchings for
doubly stochastic A or d-regular G?

@ What can we say about the polynomial pa for doubly stochastic A?
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Van der Waerden “conjecture”

“Conjecture” [Falikman, Egorychev ’81]: If A is doubly stochastic, then

n! .
~\V2rn-e "
n

> -
per(A) > .

Worst-case: A = 1J,, where J, is the all-ones matrix = per(A) = ,’7'—,',

Corollary: #pm(G) > d" - ,’:—,', for d-regular G.

Original proofs: Relied on Alexandrov-Fenchel inequalities (good sign for
us), but pretty complicated. Better/more illuminating proof?

Algorithmic implications:
@ Also know that per(A) <1 for any DS A (exercise).
@ Therefore, 2 is an e"-approximation to per(A) for any DS A.

© lterative procedure to “scale” a non-negative entry matrix to DS:
e"-approximation to per(A) [Linial-Samorodnitsky-Wigderson '00].
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Doubly stochastic polynomials

Gurvits: Let's get the stable polynomial ps in the mix:

n n n
pa(x) == H (airx1 + ajpx2 + - - + ainXp) = H Z ajjXj-
i=1 i=1j=1

Properties of pa for doubly stochastic A:
@ Row sums =1 = pa(1) =1.
@ Row/column sums =1 = Vpa(1l) = 1. Why? Product rule:

n n
Bapal)=> au[[(an-1+an -1+ +an-1)=> aq=1
k=1 itk k=1

o Already know: Coefficient of xjx> - - - x, equals per(A).
Doubly stochastic polynomial: p(1) =1 and Vp(1) =1.
New conjecture: All-ones coefficient of stable DS polynomial > ,’;—L

Polynomial is easy to evaluate, but it's #P-hard to compute coefficients.
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© Polynomial capacity
@ Definition
@ Properties of capacity: Newton polytope
@ Properties of capacity: Marginal probabilities
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Polynomial capacity

Definition: Given p € R [x] and a € R/] (always from now on), define:

. p(x) . p(x1, .-, xn)
= inf = f
Capa(p) ;20 P xl,..l.r,]xn>0 XPEx52 e xp"

First: For p € supp(p), we have

o ep(x) L puxtt
Capu(p) = Inf ~ = Iy = P

Maybe: Cap;(p) is a good approximation to p; (all-ones coefficient).

So what? Cap;(p) looks hard to compute in any case. Actually:

log C — inf |— | (ysm) ; ey
og Cap,(p) y'ean (y, ) + Og%:pue via x—e

Since p,, > 0, this is a convex program. (Or: geometric programming.)

Compute via: Ellipsoid method, interior point method, etc.
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Properties of polynomial capacity: Newton polytope

Last slide: “"Something like" the coefficients of p; efficiently computable.

Crucial connection: Polynomial capacity and AM-GM inequality,

WXL + WaXp + - A WX > XX xEn,

where x,w € R} and ) ; w; = 1.

Fact: 0 < Cap,(p) = infx=o (a) if and only if a € Newt(p).
Proof of ( <= ): Since a € Newt(p), there is a convex combination:

a= Z cup with S Csupp(p) and ¢, >0 and Z =1
nesS pHeS

For any x > 0, we now apply AM-GM:

> puxt =) (pﬂxu> > 11 <W>Cu 2 (min p") x“.

nES nEeS Cpe HES Cpe
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Properties of polynomial capacity: Newton polytope

Fact: 0 < Cap,(p) = infx>0 (a) if and only if & € Newt(p).
Proof of ( = ): We prove the contrapositive. Let's rewrite capacity as

inf LZ:) = inf Z pue<y’“_a>.

Capa(p) = inf = Jnf,
pesupp(p)

a & Newt(p) <= p — « in the same open half-space for all p <~
existence of y such that (y,u — ) < 0 for all p € supp(p).

So: Scale this y larger and larger to limit to 0.
Key idea: Separating hyperplane for Newton polytope.

Conceptual conclusion: Capacity “picks out” a polytope, and is related
to algorithmic/optimization questions concerning the polytope.
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Properties of polynomial capacity: Marginals

Fix p € R4 [x] such that p(1) = 1. Define a probability distribution v/,:
Plw = p] = p, where w~ v,

That is: v, is distributed on Z" according to the coefficients/support of p.

Marginal probabilities (“marginals”) are coordinates of the expectation:

E[w] = Z pu-p where w~ v,
pesupp(p)

In fact, the i*" marginal of v, can be written as

E[w] = meu,- = Oy Z puxt = O, p(1).
I H x=1

That is: Marginals of v, = Vp(1).

Fact: A polynomial p is doubly stochastic iff the marginals of v, are 1.
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Properties of polynomial capacity: Marginals

Easy: If p(1) =1, then 0 < Cap,(p) <1 for all c.
p(x) _ p(1)

xx — 1

Recall: 0 < Cap,(p) iff @ € Newt(p).

Proof: Cap,(p) = ;r;% =1

Fact: If p(1) =1, then Cap,(p) = 1 iff o are the marginals of p (of v}).
Proof: Recall that we have

S _ _ o) | —. )
0 > log Cap,(p) y'gﬂgn[ (y,a>+logzujpue ] nf, Fy)

Now, compute the gradient of the convex objective at y = 0:

8)"' ZM pue<y,,u) — —a; + aXip(]-)
EH pue<y7M> =0 i p(l)

So marginals = a iff VF(y)|,_o = 0 iff infimum attained at F(0) = 0.
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Recap of capacity properties

For p € Ry[x] = Ry[x1,....xp] and a € R, we write:

_ . p(x)
Capa(p) := inf = 27

Properties for p(1) = 1:
o 0 < Capy(p) < 1.
e 0 < Cap,(p) iff a € Newt(p).
e Cap,(p) =1iff a = Vp(1).
@ p is doubly stochastic iff Capy(p) = 1.
@ If row sums are 1, then A is doubly stochastic iff Cap;(pa) = 1.
@ For p € supp(p), we have p, < Cap,(p).

Can we use these properties (especially the last three) to prove the Van
der Waerden lower bound for doubly stochastic matrices/polynomials?
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© Gurvits' theorem
@ Statement of the theorem
@ The Van der Waerden bound
@ Beyond doubly stochastic matrices/polynomials
@ "Proof” of Gurvits' theorem
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Gurvits' theorem

Theorem (Gurvits '05)

If p € Ry[x] is an n-homogeneous n-variate real stable polynomial, then:

n—1 n—1
Capy <3xnp|x,,:o) > < . ) Capy(p).

Here the length of 1 depends on the input polynomial, and 0° = 1.

Note: Length of 1 depends on the number of variables. So:

Capy(p) = inf P bue Capy (84l o) — inf —2ePL)

x>0 X1 X2 - -+ Xp x>0 X1X * ** Xp—1

Further: What about when n =17

Cap1 <8x1p|xl:0> = Ir;% HO

= p; = const.
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Gurvits' theorem and the Van der Waerden bound

Theorem: For real stable n-homogeneous p € R [x], we have

n—1 n—1
Capy (OuPlym0) > ( ) Capy(p)-

n

Corollary: p; > g—,', (VdW bound) holds for doubly stochastic real stable p.

Proof: Since 0y,p|, _o is (n — 1)-homogeneous (n — 1)-variate real stable,
we can apply the theorem inductively. E.g.:

n—2o n—2
Cap; <8Xn71|xn71:0 Oxal, -0 P) > (n — 1) Cap; (aan|X,,:O) .
This leads to:

I\ /2\? n—1\"1
Copt (Oulgmo Bulmop) = (5) (5) - (57) Comalo)
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Gurvits' theorem and the Van der Waerden bound

Last slide: p doubly stochastic real stable, and

1\! /2\? n—1\"1
Capy <8X1‘x1:o"‘8><n‘xn:0p)2 (2> <3> ( n ) Capy(p)-

First: Since p is doubly stochastic, we have Cap;(p) = 1.

Next, let's simplify the constant:

() G) () ==

Finally, what is Capy <8X1|X1:0 “+ Ol o p)?

Recall: Length of 1 determined by input, a constant polynomial. So:

Therefore: p; > & Capy(p) = &5 = per(A) > 2 for DS A.
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Gurvits' theorem and non-DS matrices

Last slides: Simple proof of the VdW bound with Gurvits' theorem.

Interesting: Proof utilized optimization problem Cap;(p), but no
computation was actually needed.

Next: Remove DS condition. Proof still goes through, but Cap;(p) # 1.

Corollary: If p € Ri[x1,...,x,] is n-homogeneous real stable, then
n! “n
pr= 7 Capy(p) = e™" - Capy(p)-

Recall: Cap;(p) > p1 in general.

Corollary: “Convex” program Cap;(p) gives an e"-approximation to pj,
given an evaluation oracle for p.

Corollary: Convex program for e"-approximating the permanent of a
matrix with R entries.
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Proof of Gurvits' theorem

Theorem (Gurvits '05)

If p € Ry[x] is an n-homogeneous n-variate real stable polynomial, then:

n—1\"1
Capy (Ouplym0) > ( ) Caps(p)-

n

Here the length of 1 depends on the input polynomial, and 0° = 1.

Proof idea: Want to show

_ n—1
inf ax,,P(Xlw--,Xn—bo) > <n 1) inf p(le'-anfl»Xn)

x>0 X1X2 - Xp—1 n x>0 X1X2 -+ Xp—1Xp
Enough: For all x,...,x,-1 > 0 and q(t) := p(x1,...,Xn—1,t), we have
n—1\"1! (1) n—1\"1!
= > -inf =(—— C .
q1 = 0:q(0) > ( - ) inf = ( - ) ap1(q)

Boils down to a univariate coefficient bound for real-rooted g € R [t].
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Foreshadowing: The univariate coefficient bound

n—1
Recall we want: g; > (n) Cap;(q).
n

Lemma (Brandén-L-Pak '20)

Let g, w € R',[t] have all positive coefficients such that (jv_‘;i)n_o forms a
log-concave sequence. Then for all k € {0,...,n}, we have
9k Wi

Capi(@) ~ Cap(w)’

We will prove this next time. How can we use it? Setting w, = (})
translates to qx being ultra log-concave. For k = 1, we obtain

n o (t+ 1) n \"1
g1 Cap; (w) Cap;(q) and Cap;(w)=in n (n 1)

t>0 t

where the last equality is a basic calculus exercise.
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