Polynomial Capacity and Gurvits' Theorem Polynomial Capacity: Theory, Applications, Generalizations

Jonathan Leake

Technische Universität Berlin

December 10th, 2020

Polynomial notation:

- $\mathbb{R}, \mathbb{R}_+, \mathbb{Z}_+ :=$ reals, non-negative reals, non-negative integers.
- $\mathbf{x}^{\boldsymbol{\mu}} := \prod_{i} x_{i}^{\mu_{i}}$ and $\boldsymbol{\mu} \leq \boldsymbol{\lambda}$ is entrywise.
- $\mathbb{R}[\mathbf{x}] := v.s.$ of real polynomials in *n* variables.
- $\mathbb{R}_+[\mathbf{x}] := v.s.$ of real polynomials with non-negative coefficients.
- $\mathbb{R}^{\lambda}[\mathbf{x}] := v.s.$ of polynomials of degree at most λ_i in x_i .
- For $p \in \mathbb{R}[\pmb{x}]$, we write $p(\pmb{x}) = \sum_{\mu} p_{\mu} \pmb{x}^{\mu}$.
- For *d*-homogeneous $p \in \mathbb{R}[\mathbf{x}]$, we write $p(\mathbf{x}) = \sum_{|\mu|=d} p_{\mu} \mathbf{x}^{\mu}$.
- $\frac{d}{dx} = \frac{\partial}{\partial x} = \partial_x :=$ derivative with respect to x, and $\partial_x^{\mu} := \prod_i \partial_{x_i}^{\mu_i}$.
- $\mathrm{supp}(p) = \mathrm{support}$ of $p = \mathrm{the}$ set of $\mu \in \mathbb{Z}^n_+$ for which $p_\mu \neq 0$.
- Newt(p) = Newton polytope of p = convex hull of the support of p as a subset of Rⁿ.

The **geometry of polynomials** is generally an investigation of the connections between the various properties of polynomials:

- Algebraic, via the roots/zeros of the polynomial.
- **Combinatorial**, via the coefficients of the polynomial.
- Analytic, via the evaluations of the polynomial.

Why do we care? We use features of the interplay between these three to prove facts about mathematical objects which a priori have nothing to do with polynomials.

Typical method:

- **()** Encode some object as a polynomial which has some nice properties.
- Apply operations to that polynomial which preserve those properties.
- **Extract information** at the end which relates back to the object.

Outline

Motivation

- The permanent of a matrix with non-negative entries
- The Van der Waerden "conjecture"
- Doubly stochastic polynomials

Polynomial capacity

- Definition
- Properties of capacity: Newton polytope
- Properties of capacity: Marginal probabilities

Gurvits' theorem

- Statement of the theorem
- The Van der Waerden bound
- Beyond doubly stochastic matrices/polynomials
- "Proof" of Gurvits' theorem

Outline

Motivation

- The permanent of a matrix with non-negative entries
- The Van der Waerden "conjecture"
- Doubly stochastic polynomials

- Definition
- Properties of capacity: Newton polytope
- Properties of capacity: Marginal probabilities

- Statement of the theorem

- "Proof" of Gurvits' theorem

Permanent of a matrix $A = (a_{ij})_{i,j=1}^{n}$:

$$\operatorname{per}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)}.$$

Barvinok: "Like the determinant, only simpler."

Determinant: Compute exactly in poly(n) time. **Permanent:** #P-hard to compute exactly, **even for 0-1 matrices**.

The 0-1 matrix case is equivalent to counting perfect matchings of a bipartite graph. (In a few slides.)

Searching for a perfect matching can be done in polynomial time, unlike **counting** which is #P-hard.

Polynomial coefficients

Connect to polynomials? Given A with \mathbb{R}_+ entries, define:

$$\mathcal{P}_{\mathcal{A}}(\mathbf{x}) := \prod_{i=1}^n \sum_{j=1}^n a_{ij} x_j = \prod_{i=1}^n (a_{i1}x_1 + \cdots + a_{in}x_n) \in \mathbb{R}_+[x_1, \ldots, x_n].$$

Properties:

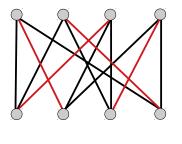
- Homogeneous polynomial of degree *n* in *n* variables.
- p_A is a product of non-negative linear forms $\implies p_A$ is real stable.
- Coefficient of $x_1x_2\cdots x_n$ is equal to per(A). Why? This coefficient corresponds to summing over all ways to choose distinct variables from each linear form.

•
$$\operatorname{per}(A) = \partial_{x_1} \partial_{x_2} \cdots \partial_{x_n} p_A = \partial_{x_1}|_{x_1=0} \partial_{x_2}|_{x_2=0} \cdots \partial_{x_n}|_{x_n=0} p_A.$$

Last one: Gives us a way to induct on *n*-homogeneous polynomials in *n* variables, even though $\partial_{x_n}|_{x_n=0} p_A$ is **not** equal to p_B for some *B*.

Compare: Contraction of a matroid \iff corresponding operation on *A*?

Let G be a bipartite graph on 2n vertices and consider:



Bipartite adjacency matrix, A:

[1	1	0	1]
1 1 1 0	0	1	1 1 0 1
1	1	1	0
0	1	1	1

perfect matchings = permanent d-regular \iff rows = cols = d

perfect matchings of G = permanent of $A = \partial_{x_1}|_{x_1=0} \cdots \partial_{x_n}|_{x_n=0} p_A$.

Existence of perfect matching of $G \iff$ Permanent of A is > 0.

Regular graphs and doubly stochastic matrices

Special case: *d*-regular graph $G \iff$ degree of every vertex is *d*.

Adjacency matrix of regular graph: All row/column sums equal to d.

Doubly stochastic (DS) matrix: Non-negative entries, and all row and column sums equal to 1.

Birkhoff polytope: Set of all doubly stochastic matrices. The extreme points are the permutation matrices.

$$\exists \text{ perfect matching of } G \iff \text{per}(A) > 0 \\ \iff \max[A \cdot X] > n - 1 \text{ over Birkhoff polytope.}$$

Two questions:

- What can we say about the permanent/# perfect matchings for doubly stochastic A or d-regular G?
- What can we say about the polynomial p_A for doubly stochastic A?

Van der Waerden "conjecture"

"Conjecture" [Falikman, Egorychev '81]: If A is doubly stochastic, then

$$\operatorname{per}(A) \geq rac{n!}{n^n} \approx \sqrt{2\pi n} \cdot e^{-n}.$$

Worst-case: $A = \frac{1}{n}J_n$, where J_n is the all-ones matrix $\implies \text{per}(A) = \frac{n!}{n^n}$.

Corollary: $\#pm(G) \ge d^n \cdot \frac{n!}{n^n}$ for *d*-regular *G*.

Original proofs: Relied on Alexandrov-Fenchel inequalities (good sign for us), but pretty complicated. **Better/more illuminating proof?**

Algorithmic implications:

- Also know that $per(A) \leq 1$ for any DS A (exercise).
- **2** Therefore, $\frac{n!}{n^n}$ is an e^n -approximation to per(A) for **any** DS A.
- Iterative procedure to "scale" a non-negative entry matrix to DS: eⁿ-approximation to per(A) [Linial-Samorodnitsky-Wigderson '00].

Doubly stochastic polynomials

Gurvits: Let's get the stable polynomial p_A in the mix:

$$p_A(\mathbf{x}) := \prod_{i=1}^n (a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n) = \prod_{i=1}^n \sum_{j=1}^n a_{ij}x_j.$$

Properties of p_A for doubly stochastic A:

• Row sums
$$=1 \implies p_{\mathcal{A}}(\mathbf{1})=1.$$

• Row/column sums = 1 $\implies \nabla p_A(1) = 1$. Why? Product rule:

$$\partial_{x_1} p_A(1) = \sum_{k=1}^n a_{k1} \prod_{i \neq k} (a_{i1} \cdot 1 + a_{i2} \cdot 1 + \dots + a_{in} \cdot 1) = \sum_{k=1}^n a_{k1} = 1.$$

• Already know: Coefficient of $x_1x_2\cdots x_n$ equals per(A).

Doubly stochastic polynomial: p(1) = 1 and $\nabla p(1) = 1$.

New conjecture: All-ones coefficient of **stable** DS polynomial $\geq \frac{n!}{n^n}$.

Polynomial is easy to evaluate, but it's **#P-hard** to compute coefficients.

Outline

1 Motivation

- The permanent of a matrix with non-negative entries
- The Van der Waerden "conjecture"
- Doubly stochastic polynomials

Polynomial capacity

- Definition
- Properties of capacity: Newton polytope
- Properties of capacity: Marginal probabilities

Gurvits' theorem

- Statement of the theorem
- The Van der Waerden bound
- Beyond doubly stochastic matrices/polynomials
- "Proof" of Gurvits' theorem

Polynomial capacity

Definition: Given $p \in \mathbb{R}_+[x]$ and $\alpha \in \mathbb{R}^n_+$ (always from now on), define:

$$\mathsf{Cap}_{\alpha}(p) := \inf_{\boldsymbol{x}>0} \frac{p(\boldsymbol{x})}{\boldsymbol{x}^{\alpha}} = \inf_{x_1, \dots, x_n > 0} \frac{p(x_1, \dots, x_n)}{x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}}$$

First: For $\mu \in \operatorname{supp}(p)$, we have

$$\mathsf{Cap}_{\mu}(p) = \inf_{\mathbf{x}>0} rac{p(\mathbf{x})}{\mathbf{x}^{\mu}} \geq \inf_{\mathbf{x}>0} rac{p_{\mu}\mathbf{x}^{\mu}}{\mathbf{x}^{\mu}} = p_{\mu}\mathbf{x}^{\mu}$$

Maybe: $Cap_1(p)$ is a good approximation to p_1 (all-ones coefficient). **So what?** $Cap_1(p)$ looks hard to compute in any case. **Actually:**

$$\log \operatorname{Cap}_{\boldsymbol{\alpha}}(\boldsymbol{p}) = \inf_{\boldsymbol{y} \in \mathbb{R}^n} \left[-\langle \boldsymbol{y}, \boldsymbol{\alpha} \rangle + \log \sum_{\boldsymbol{\mu}} p_{\boldsymbol{\mu}} e^{\langle \boldsymbol{y}, \boldsymbol{\mu} \rangle} \right] \quad \text{via} \quad \boldsymbol{x} \to e^{\boldsymbol{y}}.$$

Since $p_{\mu} > 0$, this is a **convex program**. (Or: **geometric programming**.)

Compute via: Ellipsoid method, interior point method, etc.

Properties of polynomial capacity: Newton polytope

Last slide: "Something like" the coefficients of *p*; efficiently computable.

Crucial connection: Polynomial capacity and AM-GM inequality,

$$\omega_1 x_1 + \omega_2 x_n + \cdots + \omega_n x_n \ge x_1^{\omega_1} x_2^{\omega_2} \cdots x_n^{\omega_n},$$

where $\boldsymbol{x}, \boldsymbol{\omega} \in \mathbb{R}^n_+$ and $\sum_i \omega_i = 1$.

Fact: $0 < \operatorname{Cap}_{\alpha}(p) = \inf_{x>0} \frac{p(x)}{x^{\alpha}}$ if and only if $\alpha \in \operatorname{Newt}(p)$. **Proof of** (\iff): Since $\alpha \in \operatorname{Newt}(p)$, there is a convex combination:

$$lpha = \sum_{\mu \in S} c_\mu \mu \quad ext{with} \quad S \subset ext{supp}(p) \quad ext{and} \quad c_\mu > 0 \quad ext{and} \quad \sum_{\mu \in S} c_\mu = 1.$$

For any $\boldsymbol{x} > 0$, we now apply AM-GM:

$$p(\mathbf{x}) \geq \sum_{\mu \in S} p_{\mu} \mathbf{x}^{\mu} = \sum_{\mu \in S} c_{\mu} \left(\frac{p_{\mu} \mathbf{x}^{\mu}}{c_{\mu}} \right) \geq \prod_{\mu \in S} \left(\frac{p_{\mu} \mathbf{x}^{\mu}}{c_{\mu}} \right)^{c_{\mu}} \geq \left(\min_{\mu \in S} \frac{p_{\mu}}{c_{\mu}} \right) \mathbf{x}^{\alpha}.$$

Properties of polynomial capacity: Newton polytope

Fact: $0 < \operatorname{Cap}_{\alpha}(p) = \inf_{x>0} \frac{p(x)}{x^{\alpha}}$ if and only if $\alpha \in \operatorname{Newt}(p)$. **Proof of** (\implies): We prove the contrapositive. Let's rewrite capacity as

$$\mathsf{Cap}_{\alpha}(p) = \inf_{\boldsymbol{x} > 0} \frac{p(\boldsymbol{x})}{\boldsymbol{x}^{\alpha}} = \inf_{\boldsymbol{y} \in \mathbb{R}^n} \sum_{\mu \in \mathsf{supp}(p)} p_{\mu} e^{\langle \boldsymbol{y}, \mu - \alpha \rangle}$$

 $\alpha \notin \operatorname{Newt}(p) \iff \mu - \alpha$ in the same open half-space for all $\mu \iff$ existence of \mathbf{y} such that $\langle \mathbf{y}, \mu - \alpha \rangle < 0$ for all $\mu \in \operatorname{supp}(p)$.

So: Scale this **y** larger and larger to limit to 0.

Key idea: Separating hyperplane for Newton polytope.

Conceptual conclusion: Capacity "picks out" a polytope, and is related to algorithmic/optimization questions concerning the polytope.

Properties of polynomial capacity: Marginals

Fix $p \in \mathbb{R}_+[x]$ such that p(1) = 1. Define a probability distribution u_p :

$$\mathbb{P}[oldsymbol{w}=oldsymbol{\mu}]= p_{oldsymbol{\mu}}$$
 where $oldsymbol{w}\sim oldsymbol{
u}_{
ho}.$

That is: ν_p is distributed on \mathbb{Z}^n according to the coefficients/support of p.

Marginal probabilities ("marginals") are coordinates of the expectation:

$$\mathbb{E}[oldsymbol{w}] = \sum_{oldsymbol{\mu} \in \mathsf{supp}(
ho)}
ho_{oldsymbol{\mu}} \cdot oldsymbol{\mu} \;\; ext{where} \;\; oldsymbol{w} \sim oldsymbol{
u}_{
ho}.$$

In fact, the i^{th} marginal of u_p can be written as

$$\mathbb{E}[w_i] = \sum_{\mu} p_{\mu} \mu_i = \partial_{x_i} \sum_{\mu} p_{\mu} \boldsymbol{x}^{\mu} \bigg|_{\boldsymbol{x}=\boldsymbol{1}} = \partial_{x_i} p(\boldsymbol{1}).$$

That is: Marginals of $\nu_p = \nabla p(\mathbf{1})$.

Fact: A polynomial p is doubly stochastic iff the marginals of ν_p are **1**.

Jonathan Leake (TU Berlin)

16 / 25

Properties of polynomial capacity: Marginals

$$\begin{array}{l} \textbf{Easy: If } p(\mathbf{1}) = 1, \text{ then } 0 \leq \operatorname{Cap}_{\alpha}(p) \leq 1 \text{ for all } \alpha. \\ \textbf{Proof: } \operatorname{Cap}_{\alpha}(p) = \inf_{\boldsymbol{x} > 0} \frac{p(\boldsymbol{x})}{\boldsymbol{x}^{\alpha}} \leq \frac{p(\mathbf{1})}{\mathbf{1}^{\alpha}} = 1. \end{array}$$

Recall: $0 < Cap_{\alpha}(p)$ iff $\alpha \in Newt(p)$.

Fact: If p(1) = 1, then $\text{Cap}_{\alpha}(p) = 1$ iff α are the marginals of p (of ν_p). **Proof:** Recall that we have

$$0 \geq \log \operatorname{Cap}_{\alpha}(p) = \inf_{\boldsymbol{y} \in \mathbb{R}^n} \left[-\langle \boldsymbol{y}, \boldsymbol{\alpha} \rangle + \log \sum_{\mu} p_{\mu} e^{\langle \boldsymbol{y}, \mu \rangle} \right] =: \inf_{\boldsymbol{y} \in \mathbb{R}^n} F(\boldsymbol{y}).$$

Now, compute the gradient of the **convex** objective at y = 0:

$$\partial_{y_i} F(\mathbf{y})|_{\mathbf{y}=\mathbf{0}} = -\alpha_i + \left. \frac{\partial_{y_i} \sum_{\mu} p_{\mu} e^{\langle \mathbf{y}, \mu \rangle}}{\sum_{\mu} p_{\mu} e^{\langle \mathbf{y}, \mu \rangle}} \right|_{\mathbf{y}=\mathbf{0}} = -\alpha_i + \frac{\partial_{x_i} p(\mathbf{1})}{p(\mathbf{1})}.$$

So marginals = α iff $\nabla F(\mathbf{y})|_{\mathbf{y}=\mathbf{0}} = \mathbf{0}$ iff infimum attained at $F(\mathbf{0}) = \mathbf{0}$.

Recap of capacity properties

For
$$p \in \mathbb{R}_+[x] = \mathbb{R}_+[x_1, \dots, x_n]$$
 and $\alpha \in \mathbb{R}^n_+$, we write:

$$\mathsf{Cap}_{\alpha}(p) := \inf_{\mathbf{x}>0} \frac{p(\mathbf{x})}{\mathbf{x}^{lpha}}$$

Properties for p(1) = 1:

- $0 \leq \operatorname{Cap}_{\alpha}(p) \leq 1.$
- $0 < \operatorname{Cap}_{\alpha}(p)$ iff $\alpha \in \operatorname{Newt}(p)$.
- $\operatorname{Cap}_{\alpha}(p) = 1$ iff $\alpha = \nabla p(1)$.
- p is doubly stochastic iff $Cap_1(p) = 1$.
- If row sums are 1, then A is doubly stochastic iff $Cap_1(p_A) = 1$.
- For $\mu \in \operatorname{supp}(p)$, we have $p_{\mu} \leq \operatorname{Cap}_{\mu}(p)$.

Can we use these properties (especially the last three) to prove the Van der Waerden lower bound for doubly stochastic matrices/polynomials?

Outline

1 Motivation

- The permanent of a matrix with non-negative entries
- The Van der Waerden "conjecture"
- Doubly stochastic polynomials

Polynomial capacity

- Definition
- Properties of capacity: Newton polytope
- Properties of capacity: Marginal probabilities

Gurvits' theorem

- Statement of the theorem
- The Van der Waerden bound
- Beyond doubly stochastic matrices/polynomials
- "Proof" of Gurvits' theorem

Gurvits' theorem

Theorem (Gurvits '05)

If $p \in \mathbb{R}_+[\mathbf{x}]$ is an n-homogeneous n-variate real stable polynomial, then:

$$\operatorname{Cap}_{1}\left(\left.\partial_{x_{n}}p\right|_{x_{n}=0}
ight)\geq\left(rac{n-1}{n}
ight)^{n-1}\operatorname{Cap}_{1}(p).$$

Here the length of 1 depends on the input polynomial, and $0^0 = 1$.

Note: Length of 1 depends on the number of variables. So:

$$\mathsf{Cap}_{1}(p) = \inf_{x>0} \frac{p(x)}{x_{1}x_{2}\cdots x_{n}} \quad \mathsf{but} \quad \mathsf{Cap}_{1}\left(\partial_{x_{n}}p|_{x_{n}=0}\right) = \inf_{x>0} \frac{\partial_{x_{n}}p(x)}{x_{1}x_{2}\cdots x_{n-1}}$$

Further: What about when n = 1?

$$\mathsf{Cap}_{\mathbf{1}}\left(\left.\partial_{x_{1}} p\right|_{x_{1}=0}\right) = \inf_{x>0} \frac{p_{1}}{\prod_{i=1}^{0} x_{i}} = p_{1} = \mathsf{const.}$$

Gurvits' theorem and the Van der Waerden bound

Theorem: For real stable *n*-homogeneous $p \in \mathbb{R}_+[x]$, we have

$$\operatorname{Cap}_{1}\left(\partial_{x_{n}}p|_{x_{n}=0}\right) \geq \left(\frac{n-1}{n}\right)^{n-1}\operatorname{Cap}_{1}(p).$$

Corollary: $p_1 \ge \frac{n!}{n^n}$ (VdW bound) holds for doubly stochastic real stable p. **Proof:** Since $\partial_{x_n} p|_{x_n=0}$ is (n-1)-homogeneous (n-1)-variate real stable, we can apply the theorem inductively. **E.g.:**

$$\mathsf{Cap}_{\mathbf{1}}\left(\partial_{x_{n-1}}\big|_{x_{n-1}=0} \partial_{x_n}\big|_{x_n=0} p\right) \geq \left(\frac{n-2}{n-1}\right)^{n-2} \mathsf{Cap}_{\mathbf{1}}\left(\partial_{x_n} p\big|_{x_n=0}\right).$$

This leads to:

$$\operatorname{Cap}_{\mathbf{1}}\left(\partial_{x_{1}}|_{x_{1}=0}\cdots\partial_{x_{n}}|_{x_{n}=0}\,p\right)\geq\left(\frac{1}{2}\right)^{1}\left(\frac{2}{3}\right)^{2}\cdots\left(\frac{n-1}{n}\right)^{n-1}\operatorname{Cap}_{\mathbf{1}}(p).$$

Gurvits' theorem and the Van der Waerden bound

Last slide: p doubly stochastic real stable, and

$$\operatorname{Cap}_{\mathbf{1}}\left(\partial_{x_{1}}|_{x_{1}=0}\cdots\partial_{x_{n}}|_{x_{n}=0}\,p\right)\geq\left(\frac{1}{2}\right)^{1}\left(\frac{2}{3}\right)^{2}\cdots\left(\frac{n-1}{n}\right)^{n-1}\operatorname{Cap}_{\mathbf{1}}(p).$$

First: Since *p* is doubly stochastic, we have $Cap_1(p) = 1$.

Next, let's simplify the constant:

$$\left(\frac{1}{2}\right)^1 \left(\frac{2}{3}\right)^2 \cdots \left(\frac{n-1}{n}\right)^{n-1} = \frac{1 \cdot 2 \cdot 3 \cdots (n-1)}{n^{n-1}} = \frac{n!}{n^n}.$$

Finally, what is $\operatorname{Cap}_1\left(\partial_{x_1}|_{x_1=0}\cdots \partial_{x_n}|_{x_n=0}p\right)$?

Recall: Length of 1 determined by input, a constant polynomial. So:

$$\operatorname{Cap}_{\mathbf{1}}\left(\partial_{x_{1}}|_{x_{1}=0}\cdots\partial_{x_{n}}|_{x_{n}=0}\,p\right)=\inf_{\boldsymbol{x}>0}\frac{p_{\mathbf{1}}}{\prod_{i=1}^{0}x_{i}^{\mathbf{1}}}=p_{\mathbf{1}}.$$

Therefore: $p_1 \ge \frac{n!}{n^n} \operatorname{Cap}_1(p) = \frac{n!}{n^n} \implies \operatorname{per}(A) \ge \frac{n!}{n^n}$ for DS A.

Gurvits' theorem and non-DS matrices

Last slides: Simple proof of the VdW bound with Gurvits' theorem. **Interesting:** Proof utilized optimization problem $Cap_1(p)$, but no computation was actually needed.

Next: Remove DS condition. Proof still goes through, but $Cap_1(p) \neq 1$. **Corollary:** If $p \in \mathbb{R}_+[x_1, \dots, x_n]$ is *n*-homogeneous real stable, then

$$p_1 \geq rac{n!}{n^n} \operatorname{Cap}_1(p) \geq e^{-n} \cdot \operatorname{Cap}_1(p).$$

Recall: $Cap_1(p) \ge p_1$ in general.

Corollary: "Convex" program $Cap_1(p)$ gives an e^n -approximation to p_1 , given an evaluation oracle for p.

Corollary: Convex program for e^n -approximating the permanent of a matrix with \mathbb{R}_+ entries.

Theorem (Gurvits '05)

If $p \in \mathbb{R}_+[\mathbf{x}]$ is an n-homogeneous n-variate real stable polynomial, then:

$$\operatorname{Cap}_{1}\left(\left.\partial_{x_{n}}p\right|_{x_{n}=0}
ight)\geq\left(rac{n-1}{n}
ight)^{n-1}\operatorname{Cap}_{1}(p).$$

Here the length of 1 depends on the input polynomial, and $0^0 = 1$.

Proof idea: Want to show

$$\inf_{x>0} \frac{\partial_{x_n} p(x_1, \ldots, x_{n-1}, 0)}{x_1 x_2 \cdots x_{n-1}} \ge \left(\frac{n-1}{n}\right)^{n-1} \cdot \inf_{x>0} \frac{p(x_1, \ldots, x_{n-1}, x_n)}{x_1 x_2 \cdots x_{n-1} x_n}.$$

Enough: For all $x_1, \ldots, x_{n-1} > 0$ and $q(t) := p(x_1, \ldots, x_{n-1}, t)$, we have

$$q_1 = \partial_t q(0) \ge \left(\frac{n-1}{n}\right)^{n-1} \cdot \inf_{t>0} \frac{q(t)}{t} = \left(\frac{n-1}{n}\right)^{n-1} \mathsf{Cap}_1(q).$$

Boils down to a univariate coefficient bound for real-rooted $q \in \mathbb{R}^n_+[t]$.

Foreshadowing: The univariate coefficient bound

Recall we want:
$$q_1 \geq \left(rac{n-1}{n}
ight)^{n-1} {\sf Cap}_1(q).$$

Lemma (Brändén-L-Pak '20)

Let $q, w \in \mathbb{R}^n_+[t]$ have all positive coefficients such that $\left(\frac{q_k}{w_k}\right)_{k=0}^n$ forms a log-concave sequence. Then for all $k \in \{0, \ldots, n\}$, we have

$$rac{q_k}{\mathsf{Cap}_k(q)} \geq rac{w_k}{\mathsf{Cap}_k(w)}$$

We will prove this next time. How can we use it? Setting $w_k = \binom{n}{k}$ translates to q_k being ultra log-concave. For k = 1, we obtain

$$q_1 \geq rac{n}{\mathsf{Cap}_1(w)} \cdot \mathsf{Cap}_1(q)$$
 and $\mathsf{Cap}_1(w) = \inf_{t>0} rac{(t+1)^n}{t} = n\left(rac{n}{n-1}
ight)^{n-1}$

where the last equality is a basic calculus exercise.