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Definition. Given a polynomial p € Ry [z1,...,2,] and a € R, we define
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Theorem (Gurvits’ theorem). If p € Ry[x1,...,x,] is n-homogeneous and real stable, then
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Theorem (Gurvits’ corollary). If p € Ry[z1,...,x,] is n-homogeneous and real stable, then
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Exercises

1. Prove the last step of the proof of Gurvits’ theorem: For all real-rooted p € R‘j_ [t], we have that

p1 = 9,p(0) > (d;l)d_l Cap, (p) = (d‘l)d_l i 2.
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Hint: If p(t) = Hle(sit + 1), then p; = Z?:l s;. Then use the AM-GM inequality.

2. Use Exercise 1 to prove a refined form of Gurvits’ theorem which depends on the degree of x,, in the
polynomial p. Then use this to prove Schrijver’s inequality: For any d-regular bipartite graph on 2n
vertices, the number of perfect matchings of the graph is bounded via
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#pm(G) > ( T3

3. Prove that the permanent of any doubly stochastic matrix is at most 1.

4. Let p € Ry[z1,...,2y,] be a d-homogeneous polynomial such that p(1) = 1 and Vp(1) = p € Z7}. Use
Gurvits’ corollary to prove
d! “Hid! Mil'l...ﬂl'rtn
pl o dd oyl
Hint: Consider the polynomial
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which is d-homogeneous in p; + - -+ 4+ u, variables.



