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Rounding

Goal: Optimize a function over some discrete / non-convex set.

Problem: Discrete / non-convex optimization can be hard.

E.g.: Consider trying to minimize a convex function over the lattice points
of some convex polytope (e.g., the hypercube).

E.g.: Consider trying to minimize a convex function over the boundary
points of the unit sphere, or over the rank-one matrices contained in the
boundary of the PSD cone.

One strategy:
1 Optimize over the convex hull via convex optimization.
2 “Round” the optimal point to some point in the original set.
3 Hope / prove that the resulting point is close to of the optimum.

Next question: How should we “round”?
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Inferring distributions

Goal: Given a sequence of data points from some unknown distribution on
a known support set in Rn, infer the underlying distribution.

Problem: Many possibilities for the distribution...

Sanity check: Probably the mean of the data points should be equal to
the expectation of the distribution.

One possible solution: Choose the distribution which assumes no “extra
information” beyond the mean of the data points.

Next question: What does “extra information” mean?

Answer: Entropy maximizing distribution.

Side note: Sampling from such a distribution is a way to “round” the
expectation (a point in the convex hull) to a point in the support set.
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Pictures / examples
Discrete example: For a polynomial p, try to optimize over its support.

α

supp(p)

Newt(p)

Continuous example: Try to infer a distribution on the unit circle with
expectation θ.

θ
Ω

hull(ΩΩ)
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Motivating applications
Some applications / connections without description:

Isotropic constant [Klartag ’06]
Matrix Bingham distributions [Khatri-Mardia ’77]
Interior point methods [Bubeck-Eldan ’15]
Barycentric quantum entropy [Slater ’99]

Quantum entropy: Continuous distribution over all pure states (rank-1
projections) which optimizes

Hq(A) = inf
E[µ]=A

∫
µ(X ) logµ(X )dν(X )

where A is a density matrix (PSD, trace = 1) and ν is Haar measure.

Entropic barrier function of a convex body K ⊂ Rn:

BK (v) = sup
y∈Rn

[
〈y , v〉 − log

∫
K

e〈y ,x〉dx
]
.

Question: How are these related? How is all this related to capacity?
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Probability basics
For us, a distribution µ is a positive measure on some support set
supp(µ) ⊂ Rn, such that the total measure of µ is finite.

Some notation:
For each S ⊂ Rn, define µ(S) to be the measure of the set S.
We define the set hull(µ) to be the convex hull of supp(µ).
A probability distribution has total measure is 1.

The expectation is defined as usual: E[µ] =
∫

xdµ(x)∫
dµ(x) .

The expectation is always a point in hull(µ).
Recall: If µ is a discrete probability distribution on the degree vectors
{v1, . . . , vm} in the support of a polynomial p, then we can construct

p(x) :=
m∑

i=1
pixvi where pi = µ(vi ),

such that E[µ] = ∇p(1).
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Entropy
Discrete definition: Given a discrete probability distribution µ, we define

H(µ) := −
∑

x∈supp(µ)
µ(x) logµ(x).

Some facts:
H(µ) > 0 since µ(x) ∈ [0, 1].
For a given support, maximized when µ is the uniform distribution.
Why? Because x log x is convex.
exp [−H(µ)] =

∏
x∈supp(µ) µ(x)µ(x) =⇒ capacity?

Problem: What about continuous definition?

H(µ) := −
∫

supp(µ)
µ(x) logµ(x)dx .

For continuous, µ(x) = 0 for all x . =⇒ Not a good definition.

Fix? Entropy of a density function with respect to some base measure.
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Relative entropy (Kullback-Leibler divergence)
Discrete definition: Given a discrete probability distribution µ, and a
base measure ν such that supp(µ) ⊆ supp(ν), we define

DKL(µ‖ν) :=
∑

x∈supp(ν)

[
µ(x)
ν(x) log µ(x)

ν(x)

]
ν(x).

Continuous (general) definition: Given a base measure ν and a
probability density function (pdf) φ, we can construct a probability
measure via µ := φ · ν =⇒

∫
f (x)dµ(x) =

∫
f (x)φ(x)dν(x). Then:

DKL(µ‖ν) :=
∫
φ(x) log φ(x)dν(x).

Some facts:
DKL(µ‖ν) ≥ 0. (This is less clear, since φ 6≤ 1.)
For a given ν, DKL is minimized when φ ≡ 1.

Another name for µ of the above form is absolutely continuous w.r.t. ν.
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What is relative entropy?

Last slide: DKL(µ‖ν) :=
∫
φ(x) log φ(x)dν(x) for µ = φ · ν.

Let’s consider the discrete case on support set S, with the base measure
being ν(x) = 1 for all x (unnormalized uniform distribution). Then:

DKL(µ‖ν) =
∑

x

[
µ(x)
ν(x) log µ(x)

ν(x)

]
ν(x) =

∑
x
µ(x) logµ(x) = −H(µ).

Some thoughts:
Entropy = negative relative entropy w.r.t. uniform measure.
Generalizes entropy to continuous / other discrete base measures.
In particular, max entropy = min relative entropy.
DKL is a measure of “closeness” of two distributions.

But: What does this have to do with capacity?
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Relative entropy and capacity

Recall capacity: For p(x) =
∑

v∈S ν(v)xv for some distribution ν:

Capα(p) = inf
x>0

p(x)
xα

= exp inf
y∈Rn

[
log p(ey )− 〈y ,α〉

]
.

This is essentially the convex Fenchel dual of log p(ey ).

This is the Lagrangian dual of a minimum relative entropy program:

inf
supp(µ)⊂supp(ν)

E[µ]=α

DKL(µ‖ν).

Further: Strong duality holds, which means the optimal values are equal:

− log Capα(p) = inf
supp(µ)⊂supp(ν)

E[µ]=α

DKL(µ‖ν).

Proof of all this: Not enlightening. This is essentially a folklore result.
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Relative entropy and capacity
Last slide: For p(x) =

∑
v∈S ν(v)xv , we have

− log Capα(p) = inf
supp(µ)⊂supp(ν)

E[µ]=α

DKL(µ‖ν),

Further from strong duality: The x = ey which optimizes capacity also
optimizes the entropy. What does this mean?

µopt(v) = xvν(v) = e〈y ,v〉ν(v).

That is: Min. rel. entropy distributions are always log-linear scalings of ν.

In particular: We have some facts about capacity we proved before.
Up to − log, the capacity of a polynomial is the entropy of a discrete
distribution with support S and expectation α.
Automatic: E[ν] = α iff − log Capα(p) = 0 iff Capα(p) = 1.
Automatic: − log Capα(p) ≥ 0 =⇒ Capα(p) ∈ [0, 1].
Automatic: α ∈ Newt(p) iff − log Capα(p) is finite iff Capα(p) > 0.
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Capacity for continuous distributions
Let’s use the relative entropy framework to generalize capacity. Given a
measure ν on a support set supp(ν) ⊂ Rn and some θ ∈ hull(ν), consider:

inf
µ=φ·ν
E[µ]=θ

DKL(µ‖ν).

The Lagrangian dual of this is the same, with strong duality:

inf
µ=φ·ν
E[µ]=θ

DKL(µ‖ν) = − inf
y∈Rn

[
log
∫

e〈y ,v〉dν(v)− 〈y ,θ〉
]
.

From strong duality: We similarly obtain φopt(v) = e〈yopt,v〉.

Note: When ν ∼ p is discrete, we have log
∫

e〈y ,x〉dν(x) = log p(ey ).

This gives an obvious definition for continuous capacity:

Capθ(ν) := inf
y∈Rn

∫
e〈y ,v〉dν(v)

e〈y ,θ〉
=⇒ log-convex program.

Again, when ν ∼ p this is the usual capacity.
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Computing max entropy distributions
Recall: Given measure ν and θ ∈ hull(ν) ⊂ Rn, we want to optimize:

inf
µ=φ·ν
E[µ]=θ

DKL(µ‖ν) = inf
µ=φ·ν
E[µ]=θ

∫
φ(x) log φ(x)dν(x).

Problem: The domain is potentially infinite dimensional. Even in the
discrete case, the domain is exponentially dimensional in the dimension.

Solution: Solve capacity formulation instead:

inf
µ=φ·ν
E[µ]=θ

DKL(µ‖ν) = − log inf
y∈Rn

∫
e〈y ,v〉dν(v)

e〈y ,θ〉
and φopt(v) = e〈yopt,v〉.

That is: Computing optimal y for capacity, gives optimal density φ.

This is now an n-dimensional convex optimization problem, and so we can
use ellipsoid method to approximate yopt.

[Singh-Vishnoi ’15]: Discrete case. [L-Vishnoi ’20]: Continuous case.
Jonathan Leake (TU Berlin) Max Entropy Distributions Winter 2020-2021 17 / 22



Computing continuous max entropy distributions
Last slide: We can use ellipsoid method to optimize

− inf
y∈Rn

[
log
∫

e〈y ,v〉dν(v)− 〈y ,θ〉
]
.

To use this, we need oracle access to the objective and its gradient.

Discrete case: log
∫

e〈y ,v〉dν(v) = log p(ey ) =⇒ oracle for p and ∇p.

E.g.: Spanning tree polynomials, and other “self-reducible” classes.

Continuous case: When can we compute log
∫

e〈y ,v〉dν(v)?

E.g.: Let supp(ν) be an orbit of Hermitian H under conjugation by U(n),
with ν the Haar measure induced by U(n). HCIZ formula:∫

e〈Y ,UHU∗〉dU =
n−1∏
k=1

k! ·
det(exp[λi (Y ) · λj(H)]ni ,j=1)∏

i<j [λi (Y )− λj(Y )] · [λi (H)− λj(H)] .

Since
∫

e〈Y ,UHU∗〉dU =
∫

e〈Y ,X〉dν(X ), this is exactly what we want. Up
to details, this includes the rank-1 projections case (H = diag(1, 0, . . . , 0)).
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Sampling max entropy distributions
Want: To sample from e〈y ,v〉dν(v), given a particular y .

Discrete case: Approximate counting ⇐⇒ approximate sampling
[Jerrum-Valiant-Vazirani ’86]. (Sampling for free.)
[Singh-Vishnoi ’15]: Approx. counting ⇐⇒ max-entropy computation.
(I think all this requires “self-reducibility” structure.)

What about the continuous case? Let’s try rank-1 projections.
It is not clear how to sample from a manifold according to this density.
Fun fact: diag(vv∗) = (|v1|2, . . . , |vn|2) ∈ ∆n. That is, diag maps
Hermitian rank-1 projections onto the standard simplex.
More fun fact: The pushforward of the Haar measure is Lebesgue
measure restricted to ∆n. (Duistermaat-Heckman, for example).
Super fun fact: Pushforward of e〈D,X〉dν(X ) is e〈diag(D),x〉dx .
That is: Correspondence of max-entropy distributions via diag.

Corollary: Sample ∆n uniformly by sampling unit vectors uniformly.
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Sampling in the rank-one case
Last slide: Pushforward of e〈D,X〉dν(X ) is e〈diag(D),x〉dx =⇒
Correspondence of max-entropy distributions via diag.

Log-linear density on ∆n: Standard machinery for sampling in this case
(e.g. [Lovász-Vempala ’06]), so we can sample from ∆n.

Next question: How do we go back to rank-1 projections?

Let’s compute the fiber of a given x ∈ ∆n:

diag−1(x) = {vv∗ : diag(vv∗) = x} = Tn ·
√

x
√

x>.

That is: v = (eiθ1
√x1, . . . , eiθn√xn). Since D is diagonal, we then have

e〈D,vv∗〉 = e〈diag(e−iθ)D diag(eiθ),
√

x
√

x>〉 = e〈D,
√

x
√

x>〉

That is: The max entropy distribution is uniform on fibers.

Therefore: To construct a rank-1 projection sample from a simplex
sample, we just need to uniformly sample from Tn and multiply by

√
x.
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Sampling in the case of other Hermitian orbits
Last two slides: How to sample for supp(ν) = U(n) · diag(1, 0, . . . , 0).

Question: What about when Hermitian matrix H is more interesting?

First problem: Applying diag to general Hermitian orbits does not push
forward the Haar measure to the uniform measure on a polytope.

However: Consider the more complex Rayleigh map R, which maps
Hermitian M to (Ri ,j)i≤j where:

Ri ,j := i th largest eigenvalue of the leading principal j × j submatrix.

Cauchy interlacing theorem: Ri ,j+1 ≥ Ri ,j ≥ Ri+1,j+1 for valid i , j .

For fixed R•,n = eig(H), these inequalities cut out the Gelfand-Tsetlin
polytope associated to H, called GT(H).

Ultra fun fact: The map R maps the U(n) orbit of H onto GT(H), and
the pushforward of the Haar measure is Lebesgue on GT(H), and of course
also max entropy distributions.
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Sampling and the GT polytope
Last slide: Rayleigh map pushes forward max entropy distributions to max
entropy distributions on the GT polytope.

Like before: We can sample from the log-linear density on the GT
polytope using standard techniques.

Going back to the Hermitian orbit: Similar type of argument, where
fibers of certain “refined” Rayleigh maps are uniform.

Bonus: Simplex case fits into this more general case:

R•,n := 1 0 0 0 · · · 0
R•,n−1 := R1,n−1 0 0 · · · 0
R•,n−2 := R1,n−2 0 · · · 0

. . .

Successive differences (1− R1,n−1), (R1,n−1 − R1,n−2), . . . , (R1,1) sum to 1
thus giving a point of ∆n.
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