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Goal: Optimize a function over some discrete / non-convex set.
Problem: Discrete / non-convex optimization can be hard.

E.g.: Consider trying to minimize a convex function over the lattice points
of some convex polytope (e.g., the hypercube).

E.g.: Consider trying to minimize a convex function over the boundary
points of the unit sphere, or over the rank-one matrices contained in the
boundary of the PSD cone.

One strategy:
@ Optimize over the convex hull via convex optimization.
@ “Round” the optimal point to some point in the original set.

© Hope / prove that the resulting point is close to of the optimum.

Next question: How should we “round”?
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Inferring distributions

Goal: Given a sequence of data points from some unknown distribution on
a known support set in R”, infer the underlying distribution.

Problem: Many possibilities for the distribution...

Sanity check: Probably the mean of the data points should be equal to
the expectation of the distribution.

One possible solution: Choose the distribution which assumes no “extra
information” beyond the mean of the data points.

Next question: What does “extra information” mean?

Answer: Entropy maximizing distribution.

Side note: Sampling from such a distribution is a way to “round” the
expectation (a point in the convex hull) to a point in the support set.
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Pictures / examples

Discrete example: For a polynomial p, try to optimize over its support.
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Continuous example: Try to infer a distribution on the unit circle with
expectation 6.

Jonathan Leake (TU Berlin) Max Entropy Distributions Winter 2020-2021 6/22



Motivating applications

Some applications / connections without description:
@ Isotropic constant [Klartag '06]
e Matrix Bingham distributions [Khatri-Mardia '77]
@ Interior point methods [Bubeck-Eldan '15]
@ Barycentric quantum entropy [Slater '99]

Quantum entropy: Continuous distribution over all pure states (rank-1

projections) which optimizes

Hq(A) ZE[H]]L , | H(X)log u(X)dv(X)

where A is a density matrix (PSD, trace = 1) and v is Haar measure.

Entropic barrier function of a convex body K C R™:
(y,v) — Iog/ e<"7x>dx} .
K

Question: How are these related? How is all this related to capacity?
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Probability basics

For us, a distribution p is a positive measure on some support set
supp(p) C R”, such that the total measure of p is finite.
Some notation:
@ For each S C R”, define p(S) to be the measure of the set S.
@ We define the set hull(x) to be the convex hull of supp(u).
o A probability distribution has total measure is 1.

d
e The expectation is defined as usual: E[u] = M

Jdu(x)

@ The expectation is always a point in hull().

@ Recall: If i is a discrete probability distribution on the degree vectors
{vi,...,vn} in the support of a polynomial p, then we can construct

m
p(x):=> pix"" where p;= pu(v)),
i=1

such that E[u] = Vp(1).
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Discrete definition: Given a discrete probability distribution pu, we define
H(p):=— > p(x)logu(x).
x€supp(pt)
Some facts:
@ H(w) > 0 since u(x) € [0,1].

@ For a given support, maximized when g is the uniform distribution.
Why? Because x log x is convex.

@ exp [—/H(,LL)] = ersupp(u) ,Uf(X)M(X) - capacity?

Problem: What about continuous definition?
M) == [ plx)log (x)dx.
supp(p)

For continuous, u(x) =0 for all x. = Not a good definition.

Fix? Entropy of a density function with respect to some base measure.
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Relative entropy (Kullback-Leibler divergence)

Discrete definition: Given a discrete probability distribution p, and a
base measure v such that supp(u) C supp(v), we define

Dll) = Y [ 10g 2] i)

x€Esupp(v) V(X) V(X)

Continuous (general) definition: Given a base measure v and a
probability density function (pdf) ¢, we can construct a probability
measure via 1 := ¢ - v = [ f(x)du(x) = [ f(x)p(x)dv(x). Then:

Dra(ul) == [ 0(x) log d(x)dv(x).

Some facts:
o Dk(p]|lv) > 0. (This is less clear, since ¢ £ 1.)

@ For a given v, Dk is minimized when ¢ = 1.

Another name for i of the above form is absolutely continuous w.r.t. v.
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What is relative entropy?

Last slide: Dy (u||v) /¢(X log ¢(x)dv(x) for p= ¢ - v.

Let's consider the discrete case on support set S, with the base measure
being v(x) =1 for all x (unnormalized uniform distribution). Then:

D (1lv) = Z[ 10 200wt = 3 () og p(x) = ~H(r).

Some thoughts:
@ Entropy = negative relative entropy w.r.t. uniform measure.
@ Generalizes entropy to continuous / other discrete base measures.
@ In particular, max entropy = min relative entropy.

@ Dk is a measure of “closeness” of two distributions.

But: What does this have to do with capacity?
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Relative entropy and capacity

Recall capacity: For p(x) =", csv(v)x¥ for some distribution v:

op(x) . y
Capa(p) = inf =~ & =exp inf, [log p(e’) — (v, a)]

This is essentially the convex Fenchel dual of log p(e”).

This is the Lagrangian dual of a minimum relative entropy program:

inf DKL(,UJHI/).
supp () Csupp(v)
E[u]=a

Further: Strong duality holds, which means the optimal values are equal:

—log Cap,(p) = inf Dy (u]|v).
supp(u)Csupp(v)
Elu]l=a

Proof of all this: Not enlightening. This is essentially a folklore result.
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Relative entropy and capacity

Last slide: For p(x) =3 ,csv(v)xY, we have

—log Cap,(p) = inf Do (u]|v),
supp(u)Csupp(v)
Elul=a

Further from strong duality: The x = e¥ which optimizes capacity also
optimizes the entropy. What does this mean?

fiopt(v) = x"v(v) = e¥Vu(v).
That is: Min. rel. entropy distributions are always log-linear scalings of v.

In particular: We have some facts about capacity we proved before.

@ Up to —log, the capacity of a polynomial is the entropy of a discrete
distribution with support S and expectation a.

e Automatic: E[v] = a iff —log Cap,(p) = 0 iff Cap,(p) = 1.
e Automatic: — log Cap,(p) >0 = Cap,(p) € [0,1].
e Automatic: a € Newt(p) iff —log Cap,(p) is finite iff Cap,(p) > 0.
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Capacity for continuous distributions

Let’s use the relative entropy framework to generalize capacity. Given a
measure v on a support set supp(r) C R” and some 6 € hull(v), consider:

inf  Dgp(ul|v).
H=9¢-v
E[u]=0
The Lagrangian dual of this is the same, with strong duality:
inf Dy (u]v) = — inf [Iog/e<y"’>d1/(v) _(y,0)].
pu=o¢-v yeRn
E[u]=0
From strong duality: We similarly obtain ¢qpt(v) = elort:V)
Note: When v ~ p is discrete, we have log [ e¥*) dv(x) = log p(e¥).

This gives an obvious definition for continuous capacity:

O 0)

Capé)( ) yeRn ov.0)

Again, when v ~ p this is the usual capacity.

=  log-convex program.
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Computing max entropy distributions

Recall: Given measure v and € € hull(v) C R", we want to optimize:

Jinf Dyu(ul) = inf [ 6(x)log o(x)dv(x).
E[u]=0 E[u]=0

Problem: The domain is potentially infinite dimensional. Even in the
discrete case, the domain is exponentially dimensional in the dimension.

Solution: Solve capacity formulation instead:

(yv)
ian D (p|lv) = — log inf J e du(v) and  gope(v) = elort¥),
pn=o¢-v

E[u]=0
That is: Computing optimal y for capacity, gives optimal density ¢.

This is now an n-dimensional convex optimization problem, and so we can
use ellipsoid method to approximate yqpt.

[Singh-Vishnoi "15]: Discrete case. [L-Vishnoi '20]: Continuous case.
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Computing continuous max entropy distributions

Last slide: We can use ellipsoid method to optimize

- |nf [Iog/ YV dy(v) - (y,0)|.
To use this, we need oracle access to the objective and its gradient.

Discrete case: log [ Y dv(v) = log p(e¥) = oracle for p and Vp.

E.g.: Spanning tree polynomials, and other “self-reducible” classes.

Continuous case: When can we compute log [ ") du(v)?

E.g.: Let supp(v) be an orbit of Hermitian H under conjugation by U(n),
with v the Haar measure induced by U(n). HCIZ formula:

. n-1 det(exp[Ai(Y) - A (H)]7 ;1)
oY UHU) gy — I ALY :
/ W= g m T ) —

Since [ &Y :UHU ) gU = [ &Y X)du(X), this is exactly what we want. Up
to details, this includes the rank-1 projections case (H = diag(1,0,...,0)).

Jonathan Leake (TU Berlin) Max Entropy Distributions Winter 2020-2021 18 /22



Sampling max entropy distributions

Want: To sample from e<y"’>dy(v), given a particular y.

Discrete case: Approximate counting <= approximate sampling
[Jerrum-Valiant-Vazirani '86]. (Sampling for free.)

[Singh-Vishnoi '15]: Approx. counting <= max-entropy computation.
(I think all this requires “self-reducibility” structure.)

What about the continuous case? Let's try rank-1 projections.
@ It is not clear how to sample from a manifold according to this density.
o Fun fact: diag(ww*) = (|v1]%,...,|va|?) € A,. Thatis, diag maps
Hermitian rank-1 projections onto the standard simplex.

More fun fact: The pushforward of the Haar measure is Lebesgue
measure restricted to A,. (Duistermaat-Heckman, for example).

Super fun fact: Pushforward of e(2X)du(X) is e(di28(P).x) gy
@ That is: Correspondence of max-entropy distributions via diag.

Corollary: Sample A, uniformly by sampling unit vectors uniformly.
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Sampling in the rank-one case

Last slide: Pushforward of e(PX)dy(X) is eld2e(D)x) gy —
Correspondence of max-entropy distributions via diag.

Log-linear density on A,: Standard machinery for sampling in this case
(e.g. [Lovasz-Vempala '06]), so we can sample from A,,.
Next question: How do we go back to rank-1 projections?

Let's compute the fiber of a given x € A,:
diag™!(x) = {w" : diag(w*) = x} = T" - Vxv/x .
That is: v = (e/1\/xq,...,e /x;). Since D is diagonal, we then have

o(Dow*) _ j(diag(e "®)Ddiag(e®),v/xv/x ) _ o(D/xVx')

That is: The max entropy distribution is uniform on fibers.

Therefore: To construct a rank-1 projection sample from a simplex
sample, we just need to uniformly sample from T" and multiply by v/x.
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Sampling in the case of other Hermitian orbits

Last two slides: How to sample for supp(v) = U(n) - diag(1,0,...,0).
Question: What about when Hermitian matrix H is more interesting?
First problem: Applying diag to general Hermitian orbits does not push
forward the Haar measure to the uniform measure on a polytope.

However: Consider the more complex Rayleigh map R, which maps
Hermitian M to (R;)i<j where:

Rij:= it" largest eigenvalue of the leading principal j X j submatrix.
Cauchy interlacing theorem: R; ;1 > R;; > R;; 111 for valid i, j.
For fixed R, , = eig(H), these inequalities cut out the Gelfand-Tsetlin
polytope associated to H, called GT(H).

Ultra fun fact: The map R maps the U(n) orbit of H onto GT(H), and
the pushforward of the Haar measure is Lebesgue on GT(H), and of course

also max entropy distributions.
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Sampling and the GT polytope

Last slide: Rayleigh map pushes forward max entropy distributions to max
entropy distributions on the GT polytope.

Like before: We can sample from the log-linear density on the GT
polytope using standard techniques.

Going back to the Hermitian orbit: Similar type of argument, where
fibers of certain “refined” Rayleigh maps are uniform.

Bonus: Simplex case fits into this more general case:

Re n:= 1 0 0 o --- 0
Ro,nfl = Rl,nfl 0 o --- 0
Re n—2 1= Rin—2 O 0
Successive differences (1 — R1 n-1), (Ri,n—1 — Ri,n—2),...,(R1,1) sum to 1

thus giving a point of A,,.

Jonathan Leake (TU Berlin) Max Entropy Distributions Winter 2020-2021 22/22



	Motivation
	Optimization and Rounding
	Inferring distributions
	Examples and applications

	Entropy and capacity
	Probability notation
	Entropy and relative entropy
	Relative entropy and capacity

	Computational questions for ``max entropy'' distributions
	Computing max entropy distributions
	Sampling max entropy distributions


