Capacity and Maximum Entropy Distributions Polynomial Capacity: Theory, Applications, Generalizations

Jonathan Leake

Technische Universität Berlin

January 28th, 2020

Outline

Motivation

- Optimization and Rounding
- Inferring distributions
- Examples and applications

Entropy and capacity

- Probability notation
- Entropy and relative entropy
- Relative entropy and capacity

Computational questions for "max entropy" distributions

- Computing max entropy distributions
- Sampling max entropy distributions

Outline

Motivation

- Optimization and Rounding
- Inferring distributions
- Examples and applications

Entropy and capacity

- Probability notation
- Entropy and relative entropy
- Relative entropy and capacity

3 Computational questions for "max entropy" distributions

- Computing max entropy distributions
- Sampling max entropy distributions

Rounding

Goal: Optimize a function over some discrete / non-convex set.

Problem: Discrete / non-convex optimization can be hard.

E.g.: Consider trying to minimize a convex function over the lattice points of some convex polytope (e.g., the hypercube).

E.g.: Consider trying to minimize a convex function over the boundary points of the unit sphere, or over the rank-one matrices contained in the boundary of the PSD cone.

One strategy:

- Optimize over the convex hull via convex optimization.
- **2** "Round" the optimal point to some point in the original set.
- Hope / prove that the resulting point is close to of the optimum.

Next question: How should we "round"?

Inferring distributions

Goal: Given a sequence of data points from some unknown distribution on a known support set in \mathbb{R}^n , infer the underlying distribution.

Problem: Many possibilities for the distribution...

Sanity check: Probably the mean of the data points should be equal to the expectation of the distribution.

One possible solution: Choose the distribution which assumes no "extra information" beyond the mean of the data points.

Next question: What does "extra information" mean?

Answer: Entropy maximizing distribution.

Side note: Sampling from such a distribution is a way to "round" the expectation (a point in the convex hull) to a point in the support set.

Pictures / examples

Discrete example: For a polynomial *p*, try to optimize over its support.

Continuous example: Try to infer a distribution on the unit circle with expectation θ .

Motivating applications

Some applications / connections without description:

- Isotropic constant [Klartag '06]
- Matrix Bingham distributions [Khatri-Mardia '77]
- Interior point methods [Bubeck-Eldan '15]
- Barycentric quantum entropy [Slater '99]

Quantum entropy: Continuous distribution over all pure states (rank-1 projections) which optimizes

$$\mathcal{H}_q(A) = \inf_{\mathbb{E}[\mu]=A} \int \mu(X) \log \mu(X) d\nu(X)$$

where A is a density matrix (PSD, trace = 1) and ν is Haar measure.

Entropic barrier function of a convex body $K \subset \mathbb{R}^n$:

$$B_{\mathcal{K}}(oldsymbol{v}) = \sup_{oldsymbol{y} \in \mathbb{R}^n} \left[\langle oldsymbol{y}, oldsymbol{v}
angle - \log \int_{\mathcal{K}} e^{\langle oldsymbol{y}, oldsymbol{x}
angle} doldsymbol{x}
ight].$$

Question: How are these related? How is all this related to capacity?

Outline

• Optimization and Rounding

- Inferring distributions
- Examples and applications

Entropy and capacity

- Probability notation
- Entropy and relative entropy
- Relative entropy and capacity

3 Computational questions for "max entropy" distributions

- Computing max entropy distributions
- Sampling max entropy distributions

Probability basics

For us, a **distribution** μ is a positive measure on some support set $supp(\mu) \subset \mathbb{R}^n$, such that the total measure of μ is finite.

Some notation:

- For each $S \subset \mathbb{R}^n$, define $\mu(S)$ to be the measure of the set S.
- We define the set $hull(\mu)$ to be the convex hull of $supp(\mu)$.
- A probability distribution has total measure is 1.
- The **expectation** is defined as usual: $\mathbb{E}[\mu] = \frac{\int x d\mu(x)}{\int d\mu(x)}$.
- The expectation is always a point in hull(μ).
- Recall: If μ is a discrete probability distribution on the degree vectors {v₁,..., v_m} in the support of a polynomial p, then we can construct

$$p(\mathbf{x}) := \sum_{i=1}^{m} p_i \mathbf{x}^{\mathbf{v}_i}$$
 where $p_i = \mu(\mathbf{v}_i),$

such that $\mathbb{E}[\mu] = \nabla p(\mathbf{1})$.

Entropy

Discrete definition: Given a discrete probability distribution μ , we define

$$\mathcal{H}(\mu) := -\sum_{x \in \mathsf{supp}(\mu)} \mu(x) \log \mu(x).$$

Some facts:

- $\mathcal{H}(\mu) > 0$ since $\mu(x) \in [0, 1]$.
- For a given support, maximized when μ is the uniform distribution.
 Why? Because x log x is convex.
- $\exp \left[-\mathcal{H}(\mu)\right] = \prod_{x \in \operatorname{supp}(\mu)} \mu(x)^{\mu(x)} \implies \text{capacity}?$

Problem: What about continuous definition?

$$\mathcal{H}(\mu) := -\int_{\mathsf{supp}(\mu)} \mu(x) \log \mu(x) dx.$$

For continuous, $\mu(x) = 0$ for all x. \implies Not a good definition.

Fix? Entropy of a density function with respect to some base measure.

Relative entropy (Kullback-Leibler divergence)

Discrete definition: Given a discrete probability distribution μ , and a base measure ν such that supp $(\mu) \subseteq supp(\nu)$, we define

$$\mathsf{D}_{\mathsf{KL}}(\mu \| \nu) := \sum_{x \in \mathsf{supp}(\nu)} \left[\frac{\mu(x)}{\nu(x)} \log \frac{\mu(x)}{\nu(x)} \right] \nu(x).$$

Continuous (general) definition: Given a base measure ν and a probability density function (pdf) ϕ , we can construct a probability measure via $\mu := \phi \cdot \nu \implies \int f(x)d\mu(x) = \int f(x)\phi(x)d\nu(x)$. Then:

$$\mathsf{D}_{\mathsf{KL}}(\mu \|
u) := \int \phi(x) \log \phi(x) d
u(x).$$

Some facts:

- $D_{\mathsf{KL}}(\mu \| \nu) \ge 0$. (This is less clear, since $\phi \not\leq 1$.)
- For a given ν , D_{KL} is **minimized** when $\phi \equiv 1$.

Another name for μ of the above form is **absolutely continuous** w.r.t. ν .

What is relative entropy?

Last slide:
$$D_{\mathsf{KL}}(\mu \| \nu) := \int \phi(x) \log \phi(x) d\nu(x)$$
 for $\mu = \phi \cdot \nu$.

Let's consider the discrete case on support set S, with the base measure being $\nu(x) = 1$ for all x (unnormalized uniform distribution). Then:

$$\mathsf{D}_{\mathsf{KL}}(\mu \| \nu) = \sum_{x} \left[\frac{\mu(x)}{\nu(x)} \log \frac{\mu(x)}{\nu(x)} \right] \nu(x) = \sum_{x} \mu(x) \log \mu(x) = -\mathcal{H}(\mu).$$

Some thoughts:

- Entropy = negative relative entropy w.r.t. uniform measure.
- Generalizes entropy to continuous / other discrete base measures.
- In particular, max entropy = min relative entropy.
- D_{KL} is a measure of "closeness" of two distributions.

But: What does this have to do with capacity?

Relative entropy and capacity

Recall capacity: For $p(\mathbf{x}) = \sum_{\mathbf{v} \in S} \nu(\mathbf{v}) \mathbf{x}^{\mathbf{v}}$ for some distribution ν :

$$\operatorname{Cap}_{\alpha}(p) = \inf_{\boldsymbol{x}>0} \frac{p(\boldsymbol{x})}{\boldsymbol{x}^{\alpha}} = \exp \inf_{\boldsymbol{y}\in\mathbb{R}^n} \Big[\log p(e^{\boldsymbol{y}}) - \langle \boldsymbol{y}, \alpha \rangle \Big].$$

This is essentially the **convex** Fenchel dual of $\log p(e^y)$.

This is the Lagrangian dual of a minimum relative entropy program:

$$\inf_{\substack{\sup (\mu) \subset \operatorname{supp}(\nu) \\ \mathbb{E}[\mu] = \alpha}} \mathsf{D}_{\mathsf{KL}}(\mu \| \nu).$$

Further: Strong duality holds, which means the optimal values are equal:

$$-\log \operatorname{Cap}_{\alpha}(p) = \inf_{\substack{\operatorname{supp}(\mu) \subset \operatorname{supp}(
u) \\ \mathbb{E}[\mu] = \alpha}} \operatorname{D}_{\mathsf{KL}}(\mu \|
u).$$

Proof of all this: Not enlightening. This is essentially a folklore result.

Relative entropy and capacity

Last slide: For $p(\mathbf{x}) = \sum_{\mathbf{v} \in S} \nu(\mathbf{v}) \mathbf{x}^{\mathbf{v}}$, we have

$$-\log \mathsf{Cap}_{\alpha}(p) = \inf_{\substack{\mathsf{supp}(\mu) \subset \mathsf{supp}(\nu) \\ \mathbb{E}[\mu] = \alpha}} \mathsf{D}_{\mathsf{KL}}(\mu \| \nu),$$

Further from strong duality: The $x = e^{y}$ which optimizes capacity also optimizes the entropy. What does this mean?

$$\mu_{\mathrm{opt}}(\mathbf{v}) = \mathbf{x}^{\mathbf{v}} \nu(\mathbf{v}) = e^{\langle \mathbf{y}, \mathbf{v} \rangle} \nu(\mathbf{v}).$$

That is: Min. rel. entropy distributions are always log-linear scalings of ν .

In particular: We have some facts about capacity we proved before.

- Up to $-\log$, the capacity of a polynomial is the entropy of a discrete distribution with support S and expectation α .
- Automatic: $\mathbb{E}[\nu] = \alpha$ iff $-\log \operatorname{Cap}_{\alpha}(p) = 0$ iff $\operatorname{Cap}_{\alpha}(p) = 1$.
- Automatic: $-\log \operatorname{Cap}_{\alpha}(\rho) \geq 0 \implies \operatorname{Cap}_{\alpha}(\rho) \in [0,1].$
- Automatic: $\alpha \in \mathsf{Newt}(p)$ iff $-\log \mathsf{Cap}_{\alpha}(p)$ is finite iff $\mathsf{Cap}_{\alpha}(p) > 0$.

Capacity for continuous distributions

Let's use the relative entropy framework to generalize capacity. Given a measure ν on a support set supp $(\nu) \subset \mathbb{R}^n$ and some $\theta \in \text{hull}(\nu)$, consider:

$$\inf_{\substack{\mu=\phi\cdot\nu\\\mathbb{E}[\mu]=\theta}}\mathsf{D}_{\mathsf{KL}}(\mu\|\nu).$$

The Lagrangian dual of this is the same, with strong duality:

$$\inf_{\substack{\mu=\phi\cdot\nu\\\mathbb{E}[\mu]=\theta}}\mathsf{D}_{\mathsf{KL}}(\mu\|\nu) = -\inf_{\boldsymbol{y}\in\mathbb{R}^n}\left[\log\int e^{\langle\boldsymbol{y},\boldsymbol{v}\rangle}d\nu(\boldsymbol{v}) - \langle\boldsymbol{y},\boldsymbol{\theta}\rangle\right].$$

From strong duality: We similarly obtain $\phi_{opt}(\mathbf{v}) = e^{\langle \mathbf{y}_{opt}, \mathbf{v} \rangle}$.

Note: When $\nu \sim p$ is discrete, we have $\log \int e^{\langle y, x \rangle} d\nu(x) = \log p(e^y)$.

This gives an obvious definition for continuous capacity:

$$\mathsf{Cap}_{\boldsymbol{\theta}}(\nu) := \inf_{\boldsymbol{y} \in \mathbb{R}^n} \frac{\int e^{\langle \boldsymbol{y}, \boldsymbol{v} \rangle} d\nu(\boldsymbol{v})}{e^{\langle \boldsymbol{y}, \boldsymbol{\theta} \rangle}} \implies \mathsf{log-convex} \text{ program}.$$

Again, when $\nu \sim p$ this is the usual capacity.

Outline

• Optimization and Rounding

- Inferring distributions
- Examples and applications
- Entropy and capacity
 - Probability notation
 - Entropy and relative entropy
 - Relative entropy and capacity

Computational questions for "max entropy" distributions

- Computing max entropy distributions
- Sampling max entropy distributions

Computing max entropy distributions

Recall: Given measure ν and $\theta \in hull(\nu) \subset \mathbb{R}^n$, we want to optimize:

$$\inf_{\substack{\mu=\phi\cdot\nu\\\mathbb{E}[\mu]=\theta}} \mathsf{D}_{\mathsf{KL}}(\mu\|\nu) = \inf_{\substack{\mu=\phi\cdot\nu\\\mathbb{E}[\mu]=\theta}} \int \phi(\mathbf{x}) \log \phi(\mathbf{x}) d\nu(\mathbf{x}).$$

Problem: The domain is potentially infinite dimensional. Even in the discrete case, the domain is exponentially dimensional in the dimension.

Solution: Solve capacity formulation instead:

$$\inf_{\substack{\mu=\phi\cdot\nu\\\mathbb{E}[\mu]=\theta}} \mathsf{D}_{\mathsf{KL}}(\mu\|\nu) = -\log\inf_{\boldsymbol{y}\in\mathbb{R}^n} \frac{\int e^{\langle \boldsymbol{y},\boldsymbol{v}\rangle} d\nu(\boldsymbol{v})}{e^{\langle \boldsymbol{y},\boldsymbol{\theta}\rangle}} \quad \text{and} \quad \phi_{\mathsf{opt}}(\boldsymbol{v}) = e^{\langle \boldsymbol{y}_{\mathsf{opt}},\boldsymbol{v}\rangle}.$$

That is: Computing optimal y for capacity, gives optimal density ϕ .

This is now an *n*-dimensional convex optimization problem, and so we can use ellipsoid method to approximate y_{opt} .

[Singh-Vishnoi '15]: Discrete case. [L-Vishnoi '20]: Continuous case.

Computing continuous max entropy distributions

Last slide: We can use ellipsoid method to optimize

$$-\inf_{\boldsymbol{y}\in\mathbb{R}^n}\left[\log\int e^{\langle\boldsymbol{y},\boldsymbol{v}\rangle}d\nu(\boldsymbol{v})-\langle\boldsymbol{y},\boldsymbol{\theta}\rangle\right].$$

To use this, we need oracle access to the objective and its gradient. **Discrete case:** $\log \int e^{\langle \mathbf{y}, \mathbf{v} \rangle} d\nu(\mathbf{v}) = \log p(e^{\mathbf{y}}) \implies$ oracle for p and ∇p . **E.g.:** Spanning tree polynomials, and other "self-reducible" classes.

Continuous case: When can we compute $\log \int e^{\langle y, v \rangle} d\nu(v)$?

E.g.: Let supp (ν) be an orbit of Hermitian H under conjugation by U(n), with ν the Haar measure induced by U(n). **HCIZ formula:**

$$\int e^{\langle Y, UHU^* \rangle} dU = \prod_{k=1}^{n-1} k! \cdot \frac{\det(\exp[\lambda_i(Y) \cdot \lambda_j(H)]_{i,j=1}^n)}{\prod_{i < j} [\lambda_i(Y) - \lambda_j(Y)] \cdot [\lambda_i(H) - \lambda_j(H)]}$$

Since $\int e^{\langle Y, UHU^* \rangle} dU = \int e^{\langle Y, X \rangle} d\nu(X)$, this is exactly what we want. Up to details, this includes the rank-1 projections case $(H = \text{diag}(1, 0, \dots, 0))$.

Jonathan Leake (TU Berlin)

18 / 22

Sampling max entropy distributions

Want: To sample from $e^{\langle y, v \rangle} d\nu(v)$, given a particular y.

Discrete case: Approximate counting \iff approximate sampling [Jerrum-Valiant-Vazirani '86]. (Sampling for free.)

[Singh-Vishnoi '15]: Approx. counting \iff max-entropy computation.

(I think all this requires "self-reducibility" structure.)

What about the continuous case? Let's try rank-1 projections.

- It is not clear how to sample from a manifold according to this density.
- Fun fact: diag $(\mathbf{vv}^*) = (|v_1|^2, \dots, |v_n|^2) \in \Delta_n$. That is, diag maps Hermitian rank-1 projections onto the standard simplex.
- More fun fact: The pushforward of the Haar measure is Lebesgue measure restricted to Δ_n. (Duistermaat-Heckman, for example).
- Super fun fact: Pushforward of $e^{\langle D,X\rangle}d\nu(X)$ is $e^{\langle \text{diag}(D),x\rangle}dx$.
- That is: Correspondence of max-entropy distributions via diag.

Corollary: Sample Δ_n uniformly by sampling unit vectors uniformly.

Sampling in the rank-one case

Last slide: Pushforward of $e^{\langle D,X \rangle} d\nu(X)$ is $e^{\langle \text{diag}(D),x \rangle} dx \implies$ Correspondence of max-entropy distributions via diag.

Log-linear density on Δ_n : Standard machinery for sampling in this case (e.g. [Lovász-Vempala '06]), so we can sample from Δ_n .

Next question: How do we go back to rank-1 projections?

Let's compute the fiber of a given $\boldsymbol{x} \in \Delta_n$:

$$\mathsf{diag}^{-1}(oldsymbol{x}) = \{oldsymbol{v}oldsymbol{v}^*: \mathsf{diag}(oldsymbol{v}oldsymbol{v}^*) = oldsymbol{x}\} = \mathbb{T}^n \cdot \sqrt{oldsymbol{x}} \sqrt{oldsymbol{x}}^ op.$$

That is: $\mathbf{v} = (e^{i\theta_1}\sqrt{x_1}, \dots, e^{i\theta_n}\sqrt{x_n})$. Since D is diagonal, we then have

$$e^{\langle D, {m v} {m v}^st
angle} = e^{\langle {
m diag}(e^{-i heta}) D \, {
m diag}(e^{i heta}), \sqrt{{m x}} \sqrt{{m x}}^ op
angle} = e^{\langle D, \sqrt{{m x}} \sqrt{{m x}}^ op
angle}$$

That is: The max entropy distribution is uniform on fibers.

Therefore: To construct a rank-1 projection sample from a simplex sample, we just need to uniformly sample from \mathbb{T}^n and multiply by \sqrt{x} .

Jonathan Leake (TU Berlin)

Max Entropy Distributions

Sampling in the case of other Hermitian orbits

Last two slides: How to sample for $supp(\nu) = U(n) \cdot diag(1, 0, ..., 0)$.

Question: What about when Hermitian matrix H is more interesting?

First problem: Applying diag to general Hermitian orbits does **not** push forward the Haar measure to the uniform measure on a polytope.

However: Consider the more complex **Rayleigh map** \mathcal{R} , which maps Hermitian M to $(R_{i,j})_{i \leq j}$ where:

 $R_{i,j} := i^{\text{th}}$ largest eigenvalue of the leading principal $j \times j$ submatrix.

Cauchy interlacing theorem: $R_{i,j+1} \ge R_{i,j} \ge R_{i+1,j+1}$ for valid i, j.

For fixed $R_{\bullet,n} = eig(H)$, these inequalities cut out the **Gelfand-Tsetlin** polytope associated to *H*, called GT(H).

Ultra fun fact: The map \mathcal{R} maps the U(n) orbit of H onto GT(H), and the pushforward of the Haar measure is Lebesgue on GT(H), and of course also max entropy distributions.

Sampling and the GT polytope

Last slide: Rayleigh map pushes forward max entropy distributions to max entropy distributions on the GT polytope.

Like before: We can sample from the log-linear density on the GT polytope using standard techniques.

Going back to the Hermitian orbit: Similar type of argument, where fibers of certain "refined" Rayleigh maps are uniform.

Bonus: Simplex case fits into this more general case:

$$R_{\bullet,n} := 1 \quad 0 \quad 0 \quad 0 \quad \cdots \quad 0$$

$$R_{\bullet,n-1} := R_{1,n-1} \quad 0 \quad 0 \quad \cdots \quad 0$$

$$R_{\bullet,n-2} := R_{1,n-2} \quad 0 \quad \cdots \quad 0$$

Successive differences $(1 - R_{1,n-1})$, $(R_{1,n-1} - R_{1,n-2})$, ..., $(R_{1,1})$ sum to 1 thus giving a point of Δ_n .

۰.