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Notation

Polynomial notation:
R,R+,Z+ := reals, non-negative reals, non-negative integers.
xµ :=

∏
i xµi

i and µ ≤ λ is entrywise.
R[x] := v.s. of real polynomials in n variables.
R+[x] := v.s. of real polynomials with non-negative coefficients.
Rλ[x] := v.s. of polynomials of degree at most λi in xi .
For p ∈ R[x], we write p(x) =

∑
µ pµxµ.

For d-homogeneous p ∈ R[x], we write p(x) =
∑
|µ|=d pµxµ.

d
dx = ∂

∂x = ∂x := derivative with respect to x , and ∂µ
x :=

∏
i ∂

µixi .
supp(p) = support of p = the set of µ ∈ Zn

+ for which pµ 6= 0.
Newt(p) = Newton polytope of p = convex hull of the support of p
as a subset of Rn.
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Recall: The big three

The geometry of polynomials is generally an investigation of the
connections between the various properties of polynomials:

Algebraic, via the roots/zeros of the polynomial.
Combinatorial, via the coefficients of the polynomial.
Analytic, via the evaluations of the polynomial.

Why do we care? We use features of the interplay between these three
to prove facts about mathematical objects which a priori have nothing to
do with polynomials.

Typical method:
1 Encode some object as a polynomial which has some nice properties.
2 Apply operations to that polynomial which preserve those properties.
3 Extract information at the end which relates back to the object.
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Univariate coefficient bound

Last time: Gurvits’ bound on p1 for n-homogeneous p ∈ R+[x1, . . . , xn]:

Cap1(p) ≥ p1 ≥
n!
nn Cap1(p) where Capα(p) := inf

x>0

p(x)
xα

.

Missing piece of the proof: Coefficient bound for univariate polynomials.

Lemma (Brändén-L-Pak ’20)

Let q,w ∈ Rd
+[t] be such that

(
qk
wk

)d

k=0
forms a log-concave sequence.

For all k ∈ {0, . . . , d}, if qk > 0 then

qk
Capk(q) ≥

wk
Capk(w) ⇐⇒ Capk(w) ≥ wk

qk
· Capk(q).

Equivalent: Capk(w) = sup
a log-concave

[
inf
x>0

∑d
j=0 ajwjx j

akxk

]
via ak = qk

wk
.
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Proof of the bound

Lemma: Capk(w) = sup
a log-concave

[
inf
x>0

∑d
j=0 ajwjx j

akxk

]
=: Ck .

Proof: WLOG ak = 1, which gives

Ck = sup
a log-concave

ak =1

inf
x>0

k−1∑
j=0

ajwjx j−k

+ wk +

 d∑
j=k+1

ajwjx j−k

 .
Log-concavity =⇒ ak−j = aj−1

k ak−j ≤ aj
k−1 and ak+j = aj−1

k ak+j ≤ aj
k+1,

which implies a′ := (ak
k−1, . . . , ak−1, 1, ak+1, . . . , ad−k

k+1 ) ≥ a.

Further: a′′ := (aj−k
k+1)d

j=0 ≥ a′ by forcing ak−1ak+1 = 1. Therefore:

Ck = sup
ak+1>0

 inf
x>0

 d∑
j=0

aj−k
k+1wjx j−k

 = sup
a>0

 inf
y=ax>0

 d∑
j=0

wjy j−k

 ,
which implies Ck = Capk(w).
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Examples of the univariate bound
Lemma: If q,w ∈ Rd

+[t] such that q0
w0
, q1

w1
, . . . , qd

wd
is log-concave, then

qk ≥
wk

Capk(w) · Capk(q).

Corollary: If p(x , y) is d-homogeneous CLC, then

pk ≥
(

d
k

)
kk(d − k)d−k

dd · Capk (p(x , 1)) ≈
√

d
2πk(d − k) · Cap(k,d−k)(p).

Proof: CLC equivalent to ULC coefficients. For wk =
(d

k
)
, we have

Capk

(
(x + 1)d

)
= inf

x>0

(x + y)d

xk = dd

kk(d − k)d−k .

Corollary: If p(x) has log-concave coefficients, then

pk ≥
Capk(p)
Capk(w) ≥

kk

(k + 1)k+1 · Capk(p) ≥ 1
e(k + 1) · Capk(p).

Proof: w(x) = 1 + x + · · ·+ xd ≤ 1
1−x =⇒ another calculus exercise.
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Generalization to multivariate polynomials
Now: How do we go from univariate to multivariate? Same as before:

µ! · pµ = ∂µ1
x1

∣∣
x1=0 · · · ∂

µn
xn

∣∣
xn=0 p ≥ K (µ) · Capµ(p),

for some constant K (µ). Next: Determine per-variable bound

Cap(µ1,...,µn−1)

(
∂µn

xn

∣∣
xn=0 p

)
≥ K (µn) · Capµ(p).

by fixing x1, . . . , xn−1 > 0 and proving

k! · qk = ∂k
t q(0) ≥ K (k) · Capk(q),

where q(t) := p(x1, . . . , xn−1, t). So: For all x1, . . . , xn−1 > 0, we have

∂k
t

∣∣∣
t=0

p(x1, . . . , xn−1, t)
xµ1

1 · · · x
µn−1
n−1 tµn

≥ K (µn) · inf
t>0

p(x1, . . . , xn−1, t)
xµ1

1 · · · x
µn−1
n−1 tµn

.

Taking inf over x1, . . . , xn−1 then gives the multivariate bound.
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Generalization to multivariate polynomials
Let C be some class of polynomials in R+[x]. What did we need for the
above argument to go through?

1 Class C must be preserved under ∂k
xi

∣∣∣
xi =0

for all i , k.
2 Class C must be preserved under positive evaluations of xi for all i .

E.g.: Real stable polynomials satisfy all these properties. From before:

qk ≥
(

d
k

)
kk(d − k)d−k

dd Capk(q)

when q ∈ Rd
+[t] is real-rooted ( =⇒ ULC coefficients). So:

Theorem (Gurvits)
If p ∈ Rλ

+[x1, . . . , xn] is real stable, then for any µ ∈ Z+:

Capµ(p) ≥ pµ ≥
[ n∏

i=1

(
λi
µi

)
µµi

i (λi − µi )λi−µi

λλi
i

]
Capµ(p).
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Generalization to Lorentzian polynomials

What about Lorentzian/CLC polynomials? Problem: Positive evaluations
break homogeneity =⇒ does not preserve Lorentzian/CLC.

Work-around: q(t, s) := p(x1 · s, . . . , xn−1 · s, t) for x1, . . . , xn−1 > 0.

New issue: deg(q) = deg(p) even if degxn (p) < deg(p) =⇒ we cannot
refer to per-variable degree.

At least: By the same argument, we still get Gurvits’ theorem for CLC
n-homogeneous polynomials in n variables.

Theorem (Gurvits)
If p ∈ R+[x1, . . . , xn] is d-homogeneous and Lorentzian/CLC, then:

Cap1(p) ≥ p1 ≥
n!
nn Cap1(p).
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Generalization to Lorentzian polynomials
More: Given d-homogeneous CLC p ∈ R+[x1, . . . , xn] and µ ∈ Zn

+, define

q(y) := p
(y1,1 + · · · y1,µ1

µ1
, . . . ,

yn,1 + · · · yn,µn

µn

)
.

Since p is d-homogeneous, then
∑n

i=1 µi = d =⇒ q is
d-homogeneous in d variables.
q1 = µ1!···µn!

µ
µ1
1 ···µ

µn
n

pµ by expanding
( y1,1+···y1,µ1

µ1

)µ1 · · ·
(

yn,1+···yn,µn
µn

)µn .

Therefore: pµ ≥ d!
dd ·

µ
µ1
1 ···µ

µn
n

µ1!···µn! Cap1(q).

Corollary (Gurvits)
If p ∈ R+[x1, . . . , xn] is d-homogeneous and CLC, then for any µ ∈ Z+:

Capµ(p) ≥ pµ ≥
d!
dd ·

µµ1
1 · · ·µ

µn
n

µ1! · · ·µn! Capµ(p).
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Generalization to denormalized Lorentzian polynomials
A d-homogeneous polynomial p ∈ R+[x] is denormalized Lorentzian if

N[p] :=
∑
µ

pµxµ

µ! =
∑
µ

1
µ1! · · ·µn!pµxµ is Lorentzian.

Properties:
∂xi on Lorentzian ⇐⇒ × 1

xi
on denormalized Lorentzian.

Unclear if ∂xi preserves, but ∂k
xi

∣∣∣
xi =0

does.
Preserved under “variable division”, unlike Lorentzian.
Preserved under “homogeneous” evaluations > 0, via symbol theorem.
Preserved under products, via symbol theorem.
Symbol thoerem: T preserves iff N ◦ T ◦ N−1 preserves CLC.

Examples:
Schur polynomials [Huh-Matherne-Mészáros-Dizier ’19].
Conjecture: Schubert polys. [Huh-Matherne-Mészáros-Dizier ’19].
Contingency tables generating functions [Brändén-L-Pak ’20].
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Generalization to denormalized Lorentzian polynomials
A d-homogeneous polynomial p ∈ R+[x] is denormalized Lorentzian if

N[p] :=
∑
µ

pµxµ

µ! =
∑
µ

1
µ1! · · ·µn!pµxµ is Lorentzian.

For bivariate d-homogeneous p, equivalent to (p0, . . . , pd ) log-concave.

Set wj = 1 for all j and use the lemma to get:

pk ≥
kk

(k + 1)k+1 · Capk(p) ≥ 1
e(k + 1) · Capk(p).

Theorem
If p ∈ R+[x1, . . . , xn] is denormalized Lorentzian, then for any µ ∈ Zn

+:

Capµ(p) ≥ pµ ≥
[ n∏

i=2

µµi
i

(µi + 1)µi +1

]
Capµ(p).

Jonathan Leake (TU Berlin) Coefficient Bounds Winter 2020-2021 14 / 25



Outline

1 Coefficient bounds via capacity
General bound for univariate polynomials
Generalization to multivariate polynomials
Bounds for various polynomial classes

2 Application: Mixed discriminant and mixed volume
Relation to the permanent via polarization
Capacity bounds
Counting solutions to polynomial systems over C

3 Application: Counting contingency tables
The generating polynomial for contingency tables
Capacity bounds
Volume of the Birkhoff polytope

Jonathan Leake (TU Berlin) Coefficient Bounds Winter 2020-2021 15 / 25



Constructing the mixed discriminant/volume
The mixed discriminant of n × n matrices A1, . . . ,An and the mixed
volume of compact convex sets K1, . . . ,Kn ⊂ Rn are given by:

1
n!∂x1 · · · ∂xn det

(∑
i

xiAi

)
and 1

n!∂x1 · · · ∂xn vol
(∑

i
xiKi

)
.

Recall: per(M) = ∂x1 · · · ∂xn
∏

i

(∑
j mijxj

)
. (Same, up to n!.)

Another way for mixed discriminant: Construct P(A1, . . . ,An) such that
1 P is symmetric in its entries.
2 P is multilinear.
3 P(A,A, . . . ,A) = det(A).

Then P is the mixed discriminant.

Permanent: Think of P as a function of the cols of M, and det→
∏

i xi .

Mixed volume: Think of P as a function of the compact convex sets?
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Capacity bound for the mixed discriminant
Mixed discriminant: For n × n matrices A1, . . . ,An,

D(A1, . . . ,An) := 1
n!∂x1 · · · ∂xn det

( n∑
i=1

xiAi

)
.

If A1, . . . ,An are PSD, then det (
∑n

i=1 aiAi ) is n-homogeneous real stable.

Corollary [Gurvits]: n! · D(A1, . . . ,An) ≥ n!
nn Cap1

[
det

( n∑
i=1

xiAi

)]
.

We can compute det (
∑n

i=1 xiAi ) efficiently =⇒ approximation algorithm.

Also: If tr(Ai ) = 1 for all i and
∑

i Ai = I, then A is a doubly stochastic
tuple of matrices =⇒ det (

∑n
i=1 xiAi ) is a doubly stochastic polynomial.

Therefore: n! · D(A1, . . . ,An) ≥ n!
nn in this case.

Permanent: If Ak = diag(ak), then n! · D(A1, . . . ,An) = per
(
| |

a1 ··· an
| |

)
.
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Capacity bound for the mixed volume
Mixed volume: For compact convex K1, . . . ,Kn ⊂ Rn,

V (K1, . . . ,Kn) := 1
n!∂x1 · · · ∂xn vol

( n∑
i=1

xiKi

)
.

Exercise from before: vol (
∑n

i=1 aiAi ) is n-homogeneous Lorentzian, by
the Alexandrov-Fenchel inequalities.

Corollary [Gurvits]: n! · V (K1, . . . ,Kn) ≥ n!
nn Cap1

[
vol
( n∑

i=1
xiKi

)]
.

Problem: How to compute vol (
∑n

i=1 xiKi ) efficiently?

Deterministic algo: Not possible efficiently, by [Bárány-Füredi ’87].

Randomized algo: Many options via weak membership oracle; current
best is [Lovász-Vempala ’06]. (I think?)

Therefore [Gurvits]: Randomized algo to compute the mixed volume.
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Solutions to generic polynomial systems

Theorem [Bernstein–Khovanskii–Kushnirenko ’75]: Given polynomials
f1, . . . , fn, the number of complex solutions to f1 = f2 = · · · = 0 is equal to

V (Newt(f1), . . . ,Newt(fn)),

assuming the non-zero coefficients of f1, . . . , fn are generic.

Last slide: Randomized algo to approximate within factor e−n:
Membership oracle dependent on

∑
i | supp(fi )|.

Polynomial-time randomized volume approximation for evaluation of
the polynomial vol (

∑
i xi Newt(fi )) for x > 0.

Ellipsoid method to compute capacity.

Question: Is this useful? Can this be done with more basic methods?

Question: What is a “doubly stochastic” (up to scalar) tuple Newt(f )?
=⇒ Explicit upper and lower bounds in this case.
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More general coefficients and mixed forms

More general: Given d × d PSD matrices A1, . . . ,An with d ≥ n, we
have that det (

∑n
i=1 xiAi ) is a d-homogeneous real stable polynomial.

Now: D(A1, . . . ,A1,A2, . . . ,A2, . . .) with µi copies of Ai for all i :(
d
µ

)
· D(A) ≥ d!

dd ·
µµ1

1 · · ·µ
µn
n

µ1! · · ·µn! Capµ

[
det

( n∑
i=1

xiAi

)]
.

Equivalently: D(A) ≥ µµ1
1 · · ·µ

µn
n

dd Capµ

[
det

( n∑
i=1

xiAi

)]
.

Also: Same bound for mixed volume with µi copies of Ki ⊂ Rd :

V (K) ≥ µµ1
1 · · ·µ

µn
n

dd Capµ

[
vol
( n∑

i=1
xiKi

)]
.
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Contingency tables

Given vectors α ∈ Zm
+ and β ∈ Zn

+, a contingency table is a m × n
matrix M = (mij) with Z+ entries such that

m∑
i=1

mij = βj for all j and
n∑

j=1
mij = αi for all i .

Definition: CT(α,β) := # of contingency tables with “marginals” (α,β).

E.g.: For n = m, CT(d · 1, d · 1) is the number of (non-simple) d-regular
bipartite graphs on 2n vertices. (Similar interpretation more generally.)

Generating function: CT(α,β) = coefficient p(α,β) for

pd (x, y) :=
m∏

i=1

n∏
j=1

(
1 + xiyj + (xiyj)2 + · · ·+ (xiyj)d

)

where d ≥ max(α1, . . . , αm, β1, . . . , βn). Why? (xiyj)k ⇐⇒ mij = k.
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Contingency tables generating function
Contingency tables generating function:

p∞(x, y) :=
m∏

i=1

n∏
j=1

(
1 + xiyj + (xiyj)2 + · · ·

)
=
∑
α,β

CT(α,β) · xαyβ.

Also: Max degree term of (i , j)th sum is max value of mij .

Problem: This fits into no class of polynomials we’ve looked at.

Solution: Invert the y variables for max degree d :

p̃d (x, y) =

 n∏
j=1

ydm
j

 · pd (x, y) =
m∏

i=1

n∏
j=1

(
yd

j + xiyd−1
j + · · ·+ xd

i

)
.

The (α,β) coefficient of pd is the (α, d · 1− β) coefficient of p̃d .∑d
k=0 xk

i yd−k
j is denormalized Lorentzian, and products preserve

denormalized Lorentzian =⇒ p̃d is denormalized Lorentzian.
Jonathan Leake (TU Berlin) Coefficient Bounds Winter 2020-2021 23 / 25



Capacity bounds for contingency tables
Recall: For denormalized Lorentzian p ∈ R+[x] and µ ∈ Zn

+, we have

Capµ(p) ≥ pµ ≥
[ n∏

i=2

µµi
i

(µi + 1)µi +1

]
Capµ(p) ≥

[ n∏
i=2

1
e(µi + 1)

]
Capµ(p).

Therefore: Lower bound on CT(α,β):

CT(α,β) ≥ e1−n−m
m∏

i=2

1
αi + 1

n∏
j=1

1
d − βj + 1 · Cap(α,d ·1−β)(p̃d ).

Actually: We can make the bounds symmetric and simplify:

CT(α,β) ≥ e1−n−m
m∏

i=2

1
αi + 1

n∏
j=1

1
βj + 1 · Cap(α,β)(p∞).

Bonus: We are counting lattice points in various polytopes. By scaling
and limiting, we can achieve lower bounds on volumes of these polytopes.
E.g.: Birkhoff polytope, flow polytopes, transportation polytopes
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Bounding the volume of the Birkhoff polytope
Birkhoff polytope: Matrices with ≥ 0 entries and row/col sums = 1.

Discrete approximation: Count contingency tables with α = β = d · 1 in
Zn

+, and then divide by appropriate scaling factor and limit:

vol(Bn) = lim
d→∞

CT(d · 1, d · 1)
d (n−1)2

≥ lim
d→∞

e1−2n

dn2−2n+1

n∏
i=2

1
d + 1

n∏
j=1

1
d + 1 · inf

x,y>0

[∏n
i ,j=1

∑d
k=0(xiyj)k

xd ·1yd ·1

]

= lim
d→∞

e1−2n inf
x,y>0

n∏
i ,j=1

[
1
d

d∑
k=0

(xiyj)k− d
n

]
.

Map xi → x
1
d

i and yj → y
1
d

j , and then 1
d

d∑
k=0

(xiyj)
k
d−

1
n ≈

∫ 1

0
(xiyj)t− 1

n dt.

Note: Factor of d + 1 in our bound is exactly what is needed here.
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