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Polynomial notation:

R,R4,Z; := reals, non-negative reals, non-negative integers.
xP = T[; x!" and p < A'is entrywise.

R[x] := v.s. of real polynomials in n variables.

R4 [x] := v.s. of real polynomials with non-negative coefficients.
RA[x] := v.s. of polynomials of degree at most \; in x;.

For p € R[x], we write p(x) = -, pux*.

For d-homogeneous p € R[x], we write p(x) = > u|=d Pux".

d% = a% = Oy := derivative with respect to x, and 9% =[], 9%
supp(p) = support of p = the set of u € Z for which p,, # 0.

Newt(p) = Newton polytope of p = convex hull of the support of p
as a subset of R".
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Recall: The big three

The geometry of polynomials is generally an investigation of the
connections between the various properties of polynomials:

e Algebraic, via the roots/zeros of the polynomial.
o Combinatorial, via the coefficients of the polynomial.

@ Analytic, via the evaluations of the polynomial.

Why do we care? We use features of the interplay between these three
to prove facts about mathematical objects which a priori have nothing to
do with polynomials.

Typical method:
© Encode some object as a polynomial which has some nice properties.
@ Apply operations to that polynomial which preserve those properties.
© Extract information at the end which relates back to the object.
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@ Coefficient bounds via capacity
@ General bound for univariate polynomials
@ Generalization to multivariate polynomials
@ Bounds for various polynomial classes

© Application: Mixed discriminant and mixed volume
@ Relation to the permanent via polarization
@ Capacity bounds
@ Counting solutions to polynomial systems over C

e Application: Counting contingency tables
@ The generating polynomial for contingency tables
@ Capacity bounds
@ Volume of the Birkhoff polytope
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Outline

@ Coefficient bounds via capacity
@ General bound for univariate polynomials
@ Generalization to multivariate polynomials
@ Bounds for various polynomial classes
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Univariate coefficient bound

Last time: Gurvits' bound on p; for n-homogeneous p € R [x1, ..., xp]:
Capy(p) > >—!C (p) h C (p)—'f—()
apy(p p a ere a = inf - .
P1 Z P1 = P1 w Pa )|(>0 a

Missing piece of the proof: Coefficient bound for univariate polynomials.

Lemma (Brandén-L-Pak '20)

d
Let g,w € Ri[t] be such that (‘f’v—kk)k_o forms a log-concave sequence.
For all k € {0,...,d}, if gx > O then

Ak > Wi
Capk(q) — Capk(w)

W
< Capy(w) > q_: - Capy(q).

wy”

d J

. Y g ajwix

Equivalent: Cap,(w) = sup inf #
alog-concave | X>0 aiX

]viaak:qk
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Proof of the bound

d J
>0 ajwix:
Lemma: Cap,(w) =  sup inf Joijkj =: C.
alog-concave | x>0 agX

Proof: WLOG a, = 1, which gives

k—1 d
— ; s —K o K
Ck = | sup )l(r;fo Z ajw;jx + wy + Z ajwjx
alog-concave j=0 j=k+1

ak:1
Log-concavity = a_; = af;_lak_j < a{ﬁl and ak+J = af(_lakﬂ < a{(H,
which implies a’ := (315717 ceydk-1,1, 3K01, - ak+1) > a.
Further: a" := (a;;ﬁ Jd:o > a’ by forcing ax_1ax+1 = 1. Therefore:

d
Ck = sup |inf Zaf(ﬂwj =sup | inf > wy/ K],
j=0

a41>0 x>0 | 4 a>0 |y=ax>0

which implies C, = Cap,(w).
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Examples of the univariate bound

Lemma: If g, w € R{[t] such that o 9d s |og-concave, then

.., u
Wi
ak > —— - Cap,(q).
Capy(w)

Corollary: If p(x,y) is d-homogeneous CLC, then

d\ kk(d — k)d—* d
Pk > <k> w - Capy (p(x,1)) ~ 2rk(d— k) Cap(k,d—k)(P)-

Proof: CLC equivalent to ULC coefficients. For wy = (Z) we have

QA e ) d?
Capy ((X“))_X”;fo xk T KkK(d = k)d—k

Corollary: If p(x) has log-concave coefficients, then

)
Ca Kk
oo = G s CoPe(P) = gy Comu(o)

Pk =

Proof: w(x) =1+ x+---+x9 < ;= = another calculus exercise.
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Generalization to multivariate polynomials

Now: How do we go from univariate to multivariate? Same as before:

X1 Ix1=0 Xn

Xp=0 P > K(I"’) ' Capp,(p)a

for some constant K(u). Next: Determine per-variable bound

CaP(uy, 1) (55: - p) > K(un) - Cap,(p)-

by fixing x1,...,x,—1 > 0 and proving

k! - q = 0Kq(0) > K(k) - Capx(q),

where g(t) := p(x1,...,Xn—1,t). So: For all x1,...,x,—1 > 0, we have
k
8t‘t:0p(xla-..7xn717t) >K s fp(X]_,...,Xn_]_,t)
XI/L1 .. X“n71 t!’[’n - (Mn) tl-go Xul AR X“n71 tl‘Ln '
1 n—1 1 n—1
Taking inf over xq,...,x,—1 then gives the multivariate bound.
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Generalization to multivariate polynomials

Let C be some class of polynomials in R, [x]. What did we need for the
above argument to go through?

@ Class C must be preserved under 8)’;

for all i, k.
0

Xi=

@ Class C must be preserved under positive evaluations of x; for all /.

E.g.: Real stable polynomials satisfy all these properties. From before:

d\ k¥(d — k)4=k
Ak = (k)% Cap(q)

when g € R9[t] is real-rooted (= ULC coefficients). So:

Theorem (Gurvits)

If p € RY[x1,...,xu] is real stable, then for any p € Z.:

(A (A — )i

i

Capu(p) = pu =
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Generalization to Lorentzian polynomials

What about Lorentzian/CLC polynomials? Problem: Positive evaluations
break homogeneity = does not preserve Lorentzian/CLC.

Work-around: q(t,s) :=p(xq-s,...,xp—1-5,t) for x,...,x,-1 > 0.

New issue: deg(q) = deg(p) even if deg, (p) < deg(p) = we cannot
refer to per-variable degree.

At least: By the same argument, we still get Gurvits’ theorem for CLC
n-homogeneous polynomials in n variables.

Theorem (Gurvits)

If p € Ry[xi,...,Xn] is d-homogeneous and Lorentzian/CLC, then:

n!
Capy(p) > p1 > o Capy(p)-
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Generalization to Lorentzian polynomials

More: Given d-homogeneous CLC p € R [xi,...,x,] and p € Z7, define

yii+-oon, Y1+ You,
q(y)i—p< - . . "“)-
n

ey
M1

@ Since p is d-homogeneous, then Y./ ; uj=d = q is
d—homogeneous in d variables.

: .

,U'l .
® g1 = ,A,,p” by expanding ( m -

K1

Hn
Therefore: p, > g", ‘217 Cap;(q).

Corollary (Gurvits)

If p € Ry[xi,...,xp] is d-homogeneous and CLC, then for any p € Z :

d! /illﬂ' "

Capu(p)
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Generalization to denormalized Lorentzian polynomials

A d-homogeneous polynomial p € R [x] is denormalized Lorentzian if

K 1
Nip] == p;;:: => — spux* is Lorentzian.
il ! n!

Properties:
@ Oy, on Lorentzian <= x% on denormalized Lorentzian.
1

Unclear if Oy, preserves, but 8)’; does.

@ Preserved under “variable divisio)r(1’”,0unlike Lorentzian.
@ Preserved under “homogeneous” evaluations > 0, via symbol theorem.
@ Preserved under products, via symbol theorem.
e Symbol thoerem: T preserves iff No T o N1 preserves CLC.
Examples:

@ Schur polynomials [Huh-Matherne-Mészaros-Dizier '19].

e Conjecture: Schubert polys. [Huh-Matherne-Mészaros-Dizier '19].

e Contingency tables generating functions [Brandén-L-Pak '20].
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Generalization to denormalized Lorentzian polynomials

A d-homogeneous polynomial p € R [x] is denormalized Lorentzian if

puxt 1 . .
N[p] := E = E pux" is Lorentzian.
| [T |
L T pal e !

For bivariate d-homogeneous p, equivalent to (po, ..., p4) log-concave.

Set w; =1 for all j and use the lemma to get:
> kik Capy(p) > 1 Cap(p)

/fp € R+[X]_, o

.., Xn] is denormalized Lorentzian, then for any p € 7' :

n

Hi
o]
H ﬁ] CaPM(P)-

Cap,(p) = pu >
AR R | Yy
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utline

© Application: Mixed discriminant and mixed volume
@ Relation to the permanent via polarization
@ Capacity bounds
@ Counting solutions to polynomial systems over C
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Constructing the mixed discriminant/volume

The mixed discriminant of n x n matrices Ay, ..., A, and the mixed
volume of compact convex sets Ki, ..., K, C R" are given by:

1 1
Haxl -+ Oy, det (Z x,-A,-) and E&q -+ - Ox, vol (Z x,-K,-) .

Recall: per(M) = 0y, - -- Ox, [ 1; (Zj m,-jxj). (Same, up to nl.)

Another way for mixed discriminant: Construct P(A1,...,A,) such that
© P is symmetric in its entries.
@ P is multilinear.
Q@ P(AA, ..., A) =det(A).

Then P is the mixed discriminant.

Permanent: Think of P as a function of the cols of M, and det — []; x;.

Mixed volume: Think of P as a function of the compact convex sets?
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Capacity bound for the mixed discriminant

Mixed discriminant: For n X n matrices A1,..., A,

1 n
D(Av, ... Ap) i= —0sq - O, det (Z x,-A,-> :
' i=1

If Aq,..., A, are PSD, then det (>°7_; a;A;) is n-homogeneous real stable.

| n
Corollary [Gurvits]: n! - D(A1,...,A,) > % Cap; [det (Z x,-A,-)] .
i=1

We can compute det (3°7_; x;A;) efficiently = approximation algorithm.
Also: If tr(A;) =1 for all i and }_; A; =/, then A is a doubly stochastic
tuple of matrices = det(>__; x;A;) is a doubly stochastic polynomial.

Therefore: n!- D(Ay,...,An) > ,’,’—,', in this case.

Permanent: If A, = diag(ag), then n!- D(Aq,...,A,) = per <ar:1 an).
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Capacity bound for the mixed volume

Mixed volume: For compact convex Ki,..., K, C R",

1 n
V(Ky, -, Kn) i= 0 -+ O, Vol (ZX,‘K,‘) .
’ i=1

Exercise from before: vol (}__; a;A;) is n-homogeneous Lorentzian, by
the Alexandrov-Fenchel inequalities.

. n! n
Corollary [Gurvits]: n!- V(Ki,...,K,) > " Capy [vol (; x,-K,-)] .

Problem: How to compute vol (3°7_; x;K;) efficiently?
Deterministic algo: Not possible efficiently, by [Barany-Fiiredi '87].

Randomized algo: Many options via weak membership oracle; current
best is [Lovasz-Vempala '06]. (I think?)

Therefore [Gurvits]: Randomized algo to compute the mixed volume.
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Solutions to generic polynomial systems

Theorem [Bernstein—Khovanskii—Kushnirenko ’75]: Given polynomials
fi,...,f,, the number of complex solutionsto f;y = f, =--- =0 is equal to

V(Newt(f1), ..., Newt(f,)),
assuming the non-zero coefficients of f1,..., f, are generic.

Last slide: Randomized algo to approximate within factor e™":
@ Membership oracle dependent on >_; | supp(f;)|.

@ Polynomial-time randomized volume approximation for evaluation of
the polynomial vol (3°; x; Newt(f;)) for x > 0.

@ Ellipsoid method to compute capacity.

Question: Is this useful? Can this be done with more basic methods?

Question: What is a “doubly stochastic” (up to scalar) tuple Newt(f)?
=—> Explicit upper and lower bounds in this case.
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More general coefficients and mixed forms

More general: Given d x d PSD matrices A1, ..., A, with d > n, we
have that det (3°7_; x;A;) is a d-homogeneous real stable polynomial.

Now: D(Ai1,...,A1,As, ..., Az, ...) with p; copies of A; for all i

d d! M’fl e pth” n

i=1
ILLNI . Ml,;fn n
Equivalently: D(A) > lTCap“ det Zx,-A,- .
i=1
Also: Same bound for mixed volume with p; copies of K; C RY:
M1 Hn n
M PR Mn
V(K) > 17 Cap, [vol (Z x,-K,-ﬂ .
i=1
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9 Application: Counting contingency tables
@ The generating polynomial for contingency tables
@ Capacity bounds
@ Volume of the Birkhoff polytope
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Contingency tables

Given vectors a € Z'" and B € Z], a contingency table isa m x n
matrix M = (mj;) with Z entries such that

> my=p; forallj and Y mj=qa; foralli.
i=1 j=1
Definition: CT(«, 8) := # of contingency tables with “marginals” («, 3).

E.g.: For n=m, CT(d-1,d 1) is the number of (non-simple) d-regular
bipartite graphs on 2n vertices. (Similar interpretation more generally.)

Generating function: CT(a, 8) = coefficient p(4 g) for
m n
p?06y) = TTTT (14 iy + (i) + -+ + (ay)?)
i=1j=1

where d > max(aq,...,am, 1, .., ). Why? (x,-yj)k — mj = k.
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Contingency tables generating function

Contingency tables generating function:

) :ﬁﬁ(1+xi}/j + (xiy;)? ) ZCT ,B) - x“yP.

i=1j=1
Also: Max degree term of (i, j)™ sum is max value of mj.

Problem: This fits into no class of polynomials we've looked at.

Solution: Invert the y variables for max degree d:

n m n
pY(x,y) = [Hyf’m] p00y) = TTTT (v 45y 4+ x7).
j=1

i=1j=1
The (v, B) coefficient of p9 is the (o, d - 1 — B) coefficient of p7.

Zk oxk d=k is denormalized Lorentzian, and products preserve

denormallzed Lorentzian = p< is denormalized Lorentzian.
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Capacity bounds for contingency tables

Recall: For denormalized Lorentzian p € Ry [x] and p € Z7, we have

n n

HML] Cap,(p) > [Hl
i (pi + 1)pitt T s el + 1)

Therefore: Lower bound on CT (e, B):

Cap,(p) = pu > Cap,(p)-

m 1 n 1
CT(a, B) > " - Cap(q.g.1-)(BY).
i:]‘_[2a;+1j:1_[1d—,3j+1 (,d1-5)

Actually: We can make the bounds symmetric and simplify:

1 n—m 00
CT(ev, B HO[IJrl H@Jrl Cap(q,5)(P™)-

Bonus: We are counting lattice points in various polytopes. By scaling
and limiting, we can achieve lower bounds on volumes of these polytopes.
E.g.: Birkhoff polytope, flow polytopes, transportation polytopes
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Bounding the volume of the Birkhoff polytope

Birkhoff polytope: Matrices with > 0 entries and row/col sums = 1.

Discrete approximation: Count contingency tables with @« =8 =d-1in
71, and then divide by appropriate scaling factor and limit:

Vo'(Bn) = dlmm W
1=2n 7 n nod ok
> |im ez H 1 H 1 . inf HI,J:1 Zlk:OSXI}/J)
d—oo dn*—2n+1 Pl d+1 o1 d+1 xy>0 xd- yd.

n

= lim e!™2" inf0
d—o0 X,y> ij=1

1 d k*i
d Z(Xi)’j) -
k=0

Qlx

d
1 1 1
Map x; — x and y; — y7, and then =Y (xiy))
/ d k=0

1 1 1
T %/ (xiy;)~ ndt.
0

Note: Factor of d + 1 in our bound is exactly what is needed here.
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