More Capacity Bounds on Coefficients
 Polynomial Capacity: Theory, Applications, Generalizations

Jonathan Leake
Technische Universität Berlin

January 7th, 2020

Notation

Polynomial notation:

- $\mathbb{R}, \mathbb{R}_{+}, \mathbb{Z}_{+}:=$reals, non-negative reals, non-negative integers.
- $\boldsymbol{x}^{\mu}:=\prod_{i} x_{i}^{\mu_{i}}$ and $\boldsymbol{\mu} \leq \boldsymbol{\lambda}$ is entrywise.
- $\mathbb{R}[\boldsymbol{x}]:=$ v.s. of real polynomials in n variables.
- $\mathbb{R}_{+}[\boldsymbol{x}]:=$ v.s. of real polynomials with non-negative coefficients.
- $\mathbb{R}^{\boldsymbol{\lambda}}[\boldsymbol{x}]:=$ v.s. of polynomials of degree at most λ_{i} in x_{i}.
- For $p \in \mathbb{R}[\boldsymbol{x}]$, we write $p(\boldsymbol{x})=\sum_{\mu} p_{\mu} x^{\mu}$.
- For d-homogeneous $p \in \mathbb{R}[\boldsymbol{x}]$, we write $p(\boldsymbol{x})=\sum_{|\mu|=d} p_{\mu} \boldsymbol{x}^{\mu}$.
- $\frac{d}{d x}=\frac{\partial}{\partial x}=\partial_{x}:=$ derivative with respect to x, and $\partial_{x}^{\mu}:=\prod_{i} \partial_{x_{i}}^{\mu_{i}}$.
- $\operatorname{supp}(p)=$ support of $p=$ the set of $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$ for which $p_{\mu} \neq 0$.
- $\operatorname{Newt}(p)=$ Newton polytope of $p=$ convex hull of the support of p as a subset of \mathbb{R}^{n}.

Recall: The big three

The geometry of polynomials is generally an investigation of the connections between the various properties of polynomials:

- Algebraic, via the roots/zeros of the polynomial.
- Combinatorial, via the coefficients of the polynomial.
- Analytic, via the evaluations of the polynomial.

Why do we care? We use features of the interplay between these three to prove facts about mathematical objects which a priori have nothing to do with polynomials.

Typical method:

(1) Encode some object as a polynomial which has some nice properties.
(2) Apply operations to that polynomial which preserve those properties.
(3) Extract information at the end which relates back to the object.

Outline

(1) So far in the course

- Real stable polynomials
- Lorentzian/CLC polynomials
- Polynomial capacity
(2) Coefficient bounds via capacity
- Overview
- Applications thus far
(3) Computing capacity bounds on coefficients
- Univariate bounds
- Univariate bounds for real-rooted/Lorentzian polynomials
- Multivariate bounds for real stable polynomials
(4) Application to counting contingency tables
- The generating polynomial for contingency tables
- Capacity bounds for binary contingency tables
- General contingency tables

Outline

(1) So far in the course

- Real stable polynomials
- Lorentzian/CLC polynomials
- Polynomial capacity
(2) Coefficient bounds via capacity
- Overview
- Applications thus far
(3) Computing capacity bounds on coefficients
- Univariate bounds
- Univariate bounds for real-rooted/Lorentzian polynomials
- Multivariate bounds for real stable polynomials

4. Application to counting contingency tables

- The generating polynomial for contingency tables
- Capacity bounds for binary contingency tables
- General contingency tables

So far in the course: Real stable polynomials

Real stable polynomial $p \in \mathbb{R}[\boldsymbol{x}]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$

- Definition: $p\left(z_{1}, \ldots, z_{n}\right) \neq 0$ for all $z_{i} \in \mathcal{H}_{+}$(upper half-plane).
- Intuition: Polynomials with log-concavity properties.
- Intuition: Generalizes real-rooted univariate polynomials, which have ultra log-concave coefficients $\left(\frac{p_{k}}{\binom{c}{k}}\right.$ is a log-concave sequence). Also, strong Rayleigh inequalities are a crucial generalization.

Borcea-Brändén characterization of linear preservers

- Method for determining if a linear operator preserves real stability.
- Morally, T preserves stability iff its symbol does:

$$
\operatorname{Symb}[T](x, z):=T\left[\prod_{i=1}^{n}\left(x_{i}+z_{i}\right)^{\lambda_{i}}\right]=\sum_{\mu \leq \lambda}\binom{\boldsymbol{\lambda}}{\boldsymbol{\mu}} z^{\lambda-\mu} T\left[x^{\mu}\right]
$$

- Intuition: Apply the liner operator T to a "generic" polynomial.
- E.g.: $\left.p\right|_{x_{i}=a}$ for $a \in \mathbb{R}, \nabla_{\boldsymbol{v}} p$ for $\boldsymbol{v} \in \mathbb{R}_{+}^{n}, p(A \boldsymbol{x})$ for A with ≥ 0 entries

So far in the course: Lorentzian / CLC polynomials

Lorentzian / CLC polynomial d-homogeneous $p \in \mathbb{R}_{+}[\boldsymbol{x}]$

- Definition: $\nabla_{\boldsymbol{v}_{1}} \cdots \nabla_{\boldsymbol{v}_{k}} p$ is log-concave for all $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}_{+}^{n}$.
- Definition: Matroidal support + all derivatives $\partial_{x_{1}}^{\mu_{1}} \cdots \partial_{x_{n}}^{\mu_{n}} p$ with $|\boldsymbol{\mu}|=d-2$ are quadratic forms with Lorentz signature.
- Intuition: Generalizes real stability to further capture log-concavity: for $n=2$, Lorentzian/CLC is equivalent to ULC coefficients.
- Intuition: Lorentz signature is equivalent to a reverse Cauchy-Schwarz inequality or Alexandrov-Fenchel inequality.

Preservers via [Brändén-Huh], [Anari-Liu-Oveis Gharan-Vinzant]

- Same method for determining if a linear operator preserves Lorentzian.
- Unfortunately not a characterization.
- The $[\operatorname{Symb}[T]$ is Lorentzian $\Longrightarrow T$ preserves Lorentzian] direction still holds. (The practical direction.)
- E.g.: $\nabla_{\boldsymbol{v}} p$ for $\boldsymbol{v} \in \mathbb{R}_{+}^{n}, p(A \boldsymbol{x})$ for A with ≥ 0 entries

So far in the course: Polynomial capacity

Recall: Given polynomial p with coefficients ≥ 0 and any $\boldsymbol{\alpha} \in \mathbb{R}_{+}^{n}$, define

$$
\operatorname{Cap}_{\alpha}(p):=\inf _{x>0} \frac{p(\boldsymbol{x})}{\boldsymbol{x}^{\alpha}}=\inf _{x>0} \frac{p(\boldsymbol{x})}{x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}}
$$

Some basic facts:

- $\operatorname{Cap}_{\alpha}(p)>0$ iff $\boldsymbol{\alpha} \in \operatorname{Newt}(p)$.
- $\operatorname{Cap}_{\alpha}(p)=p(\mathbf{1})$ iff $\alpha=\nabla \log p(\mathbf{1})$.
- $\operatorname{Cap}_{\mu}(p) \geq p_{\mu}$ for $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$.

Gurvits' theorem: For n-homogeneous real stable $p \in \mathbb{R}_{+}\left[x_{1}, \ldots, x_{n}\right]$,

$$
\operatorname{Cap}_{1}\left(\left.\partial_{x_{n}}\right|_{x_{n}=0} p\right) \geq\left(\frac{n-1}{n}\right)^{n-1} \operatorname{Cap}_{1}(p)
$$

Gurvits' corollary: $\operatorname{Cap}_{1}(p) \geq p_{1} \geq \frac{n!}{n^{n}} \operatorname{Cap}_{1}(p)$.
Implies e^{n}-approximation algorithm to the permanent, and other things...

Outline

(1) So far in the course

- Real stable polynomials
- Lorentzian/CLC polynomials
- Polynomial capacity
(2) Coefficient bounds via capacity
- Overview
- Applications thus far
(3) Computing capacity bounds on coefficients
- Univariate bounds
- Univariate bounds for real-rooted/Lorentzian polynomials
- Multivariate bounds for real stable polynomials

4 Application to counting contingency tables

- The generating polynomial for contingency tables
- Capacity bounds for binary contingency tables
- General contingency tables

What/why/how: Coefficient bounds via capacity

Recall: Given polynomial p with coefficients ≥ 0 and any $\boldsymbol{\alpha} \in \mathbb{R}_{+}^{n}$, define

$$
\operatorname{Cap}_{\alpha}(p):=\inf _{x>0} \frac{p(\boldsymbol{x})}{x^{\alpha}}=\inf _{x>0} \frac{p(\boldsymbol{x})}{x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}}
$$

Want: Given polynomial $p(\boldsymbol{x})=\sum_{\mu} p_{\mu} x^{\mu}$, obtain bound of the form

$$
\operatorname{Cap}_{\mu}(p) \geq p_{\mu} \geq K\left(\mu_{1}, \ldots, \mu_{n}\right) \cdot \operatorname{Cap}_{\mu}(p)
$$

Why we care: Combinatorial bounds when $\operatorname{Cap}_{\mu}(p)$ has explicit formula, or else algorithmic bounds since $\operatorname{Cap}_{\mu}(p)$ is essentially a convex program.

How do we get such bounds? Upper bound easy; lower bound:
(1) Obtain capacity bounds on coefficients of univariate (or bivariate homogeneous) polynomials.
(2) Apply such bounds to $p\left(y_{1}, \ldots, y_{n-1}, t\right) \in \mathbb{R}_{+}[t]$ (or $\left.p\left(y_{1} \cdot s, \ldots, y_{n-1} \cdot s, t\right) \in \mathbb{R}_{+}[t, s]\right)$ for any fixed $y_{1}, \ldots, y_{n-1}>0$.
(3) Take inf over y_{1}, \ldots, y_{n-1} and induct.

Applications we have seen

Capacity bounds for real stable, Lorentzian, denormalized Lorentzian.
Permanent (Gurvits): Given matrix A, define $p(x):=\prod_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{j}$:

$$
\operatorname{Cap}_{1}(p) \geq \operatorname{per}(A)=p_{1} \geq \frac{n!}{n^{n}} \operatorname{Cap}_{1}(p) \geq e^{-n} \operatorname{Cap}_{1}(p)
$$

When A is DS (doubly stochastic), we have $\operatorname{Cap}_{\mathbf{1}}(p)=1$.
Mixed volume (Gurvits): Given convex compact set $K_{1}, \ldots, K_{n} \subset \mathbb{R}^{n}$, consider the polynomial $p(\boldsymbol{x}):=\operatorname{vol}\left(\sum_{i=1}^{n} x_{i} K_{i}\right)$ via Minkowski sum:

$$
\frac{1}{n!} \operatorname{Cap}_{\mathbf{1}}(p) \geq V\left(K_{1}, K_{2}, \ldots, K_{n}\right)=\frac{1}{n!} p_{1} \geq \frac{1}{n^{n}} \operatorname{Cap}_{\mathbf{1}}(p)
$$

When $\left(K_{1}, \ldots, K_{n}\right)$ is a "DS tuple", we have $\operatorname{Cap}_{1}(p)=1$.
Similar bounds for $V\left(K_{1}^{\mu_{1}}, \ldots, K_{n}^{\mu_{d}}\right)$ when $K_{i} \subset \mathbb{R}^{d}$ and $|\boldsymbol{\mu}|=d$ in terms of $\operatorname{Cap}_{\mu}(p)$, where $K_{i}^{\mu_{i}}$ indicates μ_{i} copies of K_{i}.

Also: perfect matchings, mixed discriminant, contingency tables

Outline

(1) So far in the course

- Real stable polynomials
- Lorentzian/CLC polynomials
- Polynomial capacity
(2) Coefficient bounds via capacity
- Overview
- Applications thus far
(3) Computing capacity bounds on coefficients
- Univariate bounds
- Univariate bounds for real-rooted/Lorentzian polynomials
- Multivariate bounds for real stable polynomials
(4) Application to counting contingency tables
- The generating polynomial for contingency tables
- Capacity bounds for binary contingency tables
- General contingency tables

Univariate bounds

Recall: How do we get such bounds?
(1) Obtain capacity bounds on coefficients of univariate (or bivariate homogeneous) polynomials.
(2) Apply such bounds to $p\left(y_{1}, \ldots, y_{n-1}, t\right) \in \mathbb{R}_{+}[t]$ (or $\left.p\left(y_{1} \cdot s, \ldots, y_{n-1} \cdot s, t\right) \in \mathbb{R}_{+}[t, s]\right)$ for any fixed $y_{1}, \ldots, y_{n-1}>0$.
(3) Take inf over y_{1}, \ldots, y_{n-1} and induct.

First: How are the univariate and bivariate homogeneous cases related? Capacity relation for $p(t)=P(t, 1)$ where P is homogeneous:

$$
\operatorname{Cap}_{k}(p)=\inf _{t>0} \frac{\sum_{i=0}^{d} p_{i} t^{i}}{t^{k}}=\inf _{t, s>0} \frac{\sum_{i=0}^{d} p_{i}\left(\frac{t}{s}\right)^{i} \cdot s^{d}}{\left(\frac{t}{s}\right)^{k} \cdot s^{d}}=\operatorname{Cap}_{(k, d-k)}(P)
$$

Now: How do we obtain univariate bounds?

Univariate bounds

Lemma (Brändén-L-Pak '20)

Let $q, w \in \mathbb{R}_{+}^{d}[t]$ be such that $\left(\frac{q_{j}}{w_{j}}\right)_{j=0}^{d}$ forms a log-concave sequence. For all $k \in\{0, \ldots, d\}$, we have

$$
q_{k} \geq \frac{w_{k}}{\operatorname{Cap}_{k}(w)} \cdot \operatorname{Cap}_{k}(q)
$$

Proof sketch:

(1) WLOG $q_{k}=w_{k}=1$ by scaling: now want $\operatorname{Cap}_{k}(q) \leq \operatorname{Cap}_{k}(w)$.
(2) Log-concavity implies $\frac{q_{k+j}}{w_{k+j}} \leq\left(\frac{q_{k+1}}{w_{k+1}}\right)^{j}$ for all j (since $\frac{q_{k}}{w_{k}}=1$).
(3) $\frac{q(t)}{t^{k}}=\sum_{j=-k}^{d-k} q_{k+j} t^{j} \leq \sum_{j=-k}^{d-k} w_{k+j}\left(\frac{q_{k+1}}{w_{k+1}} \cdot t\right)^{j}=\frac{w\left(\frac{q_{k+1}}{w_{k+1}} \cdot t\right)}{\left(\frac{q_{k+1}}{w_{k+1}} \cdot t\right)^{k}}$.
(9) Since $\frac{q_{k+1}}{w_{k+1}}>0$ is fixed, take inf over $t>0$ to get the result.

Univariate bounds for real-rooted/Lorentzian polynomials

Previous slide: $q_{k} \geq \frac{w_{k}}{\operatorname{Cap}_{k}(w)} \cdot \operatorname{Cap}_{k}(q)$ whenever $\frac{q_{j}}{w_{j}}$ log-concave.
Recall: Real-rooted \Longrightarrow ULC (ultra log-concave) coefficients.
For bivariate homogeneous: Lorentzian \Longleftrightarrow ULC coefficients.
ULC coefficients: $\frac{q_{j}}{\binom{d}{j}}$ is log-concave for $q \in \mathbb{R}_{+}^{d}[t] \Longrightarrow w_{j}=\binom{d}{j}$.
Corollary
If $q(t) \in \mathbb{R}_{+}^{d}[t]$ has ULC coefficients, then for all k we have

$$
q_{k} \geq\binom{ d}{k} \frac{k^{k}(d-k)^{d-k}}{d^{d}} \operatorname{Cap}_{k}(q)
$$

Proof: By calculus, $\operatorname{Cap}_{k}(w)=\inf _{t>0} \frac{(t+1)^{d}}{t^{k}}=\frac{d^{d}}{k^{k}(d-k)^{d-k}}$.

Multivariate bounds for real stable polynomials

Want: Bound on coefficient p_{μ} for some $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$.
Given real stable $p \in \mathbb{R}_{+}^{\lambda}\left[x_{1}, \ldots, x_{n}\right]$, we have that

$$
q(t):=p\left(y_{1}, \ldots, y_{n-1}, t\right) \in \mathbb{R}_{+}^{\lambda_{n}}[t]
$$

is real-rooted for all $y_{1}, \ldots, y_{n-1}>0 \Longrightarrow$ ULC coeffcients.
Previous bound: $q_{\mu_{n}} \geq\binom{\lambda_{n}}{\mu_{n}} \frac{\mu_{n}^{\mu_{n}}\left(\lambda_{n}-\mu_{n}\right)^{\lambda_{n}-\mu_{n}}}{\lambda_{n}^{\lambda_{n}}} \operatorname{Cap}_{\mu_{n}}(q)$.
Next: $q_{\mu_{n}}=\frac{1}{\mu_{n}!} \cdot\left[\left.\partial_{x_{n}}^{\mu_{n}}\right|_{x_{n}=0} p\right](\boldsymbol{y})$ and

$$
\operatorname{Cap}_{\mu_{n}}(q)=\inf _{t>0} \frac{p(\boldsymbol{y}, t)}{t^{\mu_{n}}}=\inf _{x_{n}>0} \frac{p\left(\boldsymbol{y}, x_{n}\right)}{x_{n}^{\mu_{n}}}
$$

Since $q_{\mu_{n}}=\frac{1}{\mu_{n}!} \cdot\left[\left.\partial_{\chi_{n}}^{\mu_{n}}\right|_{x_{n}=0} p\right](\boldsymbol{y})$ is real stable as a function of \boldsymbol{y}, we can induct by dividing through by $y_{1}^{\mu_{1}} \cdots y_{n-1}^{\mu_{n-1}}$ and then take inf over $\boldsymbol{y}>0$.

Putting it all together

Last slide: For $K_{d}(k):=\binom{d}{k} \frac{k^{k}(d-k)^{d-k}}{d^{d}}$, we have

$$
\begin{aligned}
\left.\frac{1}{\mu_{n}!} \cdot \partial_{x_{n}}^{\mu_{n}}\right|_{x_{n}=0} p(\boldsymbol{y})=q_{\mu_{n}} & \geq K_{\lambda_{n}}\left(\mu_{n}\right) \cdot \operatorname{Cap}_{\mu_{n}}(q) \\
& =K_{\lambda_{n}}\left(\mu_{n}\right) \cdot \inf _{x_{n}>0} \frac{p\left(\boldsymbol{y}, x_{n}\right)}{x_{n}^{\mu_{n}}}
\end{aligned}
$$

Now: Divide through by $y_{1}^{\mu_{1}} \cdots y_{n-1}^{\mu_{n-1}}$ and take inf to get

$$
\frac{1}{\mu_{n}!} \cdot \inf _{\boldsymbol{y}>0} \frac{\left.\partial_{x_{n}}^{\mu_{n}}\right|_{x_{n}=0} p(\boldsymbol{y})}{y_{1}^{\mu_{1}} \cdots y_{n-1}^{\mu_{n-1}}} \geq K_{\lambda_{n}}\left(\mu_{n}\right) \cdot \inf _{\boldsymbol{y}, x_{n}>0} \frac{p\left(\boldsymbol{y}, x_{n}\right)}{y_{1}^{\mu_{1}} \cdots y_{n-1}^{\mu_{n}-1} x_{n}^{\mu_{n}}} .
$$

Theorem (Gurvits)

Given a real stable $p \in \mathbb{R}_{+}^{\lambda}[\boldsymbol{x}]$ and $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$, we have

$$
\operatorname{Cap}_{\left(\mu_{1}, \ldots, \mu_{n-1}\right)}\left(\left.\frac{1}{\mu_{n}!} \cdot \partial_{x_{n}}^{\mu_{n}}\right|_{x_{n}=0} p\right) \geq\binom{\lambda_{n}}{\mu_{n}} \frac{\mu_{n}^{\mu_{n}}\left(\lambda_{n}-\mu_{n}\right)^{\lambda_{n}-\mu_{n}}}{\lambda_{n}^{\lambda_{n}}} \operatorname{Cap}_{\mu}(p) .
$$

Coefficient bounds for real stable polynomials

Next: Use induction to obtain a general coefficient bound.

Corollary (Gurvits)

Given a real stable $p \in \mathbb{R}_{+}^{\lambda}[\boldsymbol{x}]$ and $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$, we have

$$
p_{\mu} \geq\left[\prod_{i=1}^{n}\binom{\lambda_{i}}{\mu_{i}} \frac{\mu_{i}^{\mu_{i}}\left(\lambda_{i}-\mu_{i}\right)^{\lambda_{i}-\mu_{i}}}{\lambda_{i}^{\lambda_{i}}}\right] \cdot \operatorname{Cap}_{\mu}(p)
$$

Base case: Univariate case: $p_{k} \geq\binom{ d}{k} \frac{k^{k}(d-k)^{d-k}}{d^{d}} \operatorname{Cap}_{k}(p)$.
Induction: Apply bound to $q:=\left.\frac{1}{\mu_{n}!} \cdot \partial_{x_{n}}^{\mu_{n}}\right|_{x_{n}=0} p$ and $\nu:=\left(\mu_{1}, \ldots, \mu_{n-1}\right)$:

$$
p_{\mu}=q_{\nu} \geq\left[\prod_{i=1}^{n-1}\binom{\lambda_{i}}{\mu_{i}} \frac{\mu_{i}^{\mu_{i}}\left(\lambda_{i}-\mu_{i}\right)^{\lambda_{i}-\mu_{i}}}{\lambda_{i}^{\lambda_{i}}}\right] \cdot \operatorname{Cap}_{\nu}(q)
$$

Now apply theorem from previous slide and combine:

$$
\operatorname{Cap}_{\nu}(q)=\operatorname{Cap}_{\nu}\left(\left.\frac{1}{\mu!} \cdot \partial_{X_{n}}^{\mu_{n}}\right|_{X_{n}=0} p\right) \geq\binom{\lambda_{n}}{\mu_{n}} \frac{\mu_{n}^{\mu_{n}}\left(\lambda_{n}-\mu_{n}\right)^{\lambda_{n}-\mu_{n}}}{\lambda_{n}^{\lambda_{n}}} \operatorname{Cap}_{\mu}(p)
$$

Outline

(1) So far in the course

- Real stable polynomials
- Lorentzian/CLC polynomials
- Polynomial capacity
(2) Coefficient bounds via capacity
- Overview
- Applications thus far
(3) Computing capacity bounds on coefficients
- Univariate bounds
- Univariate bounds for real-rooted/Lorentzian polynomials
- Multivariate bounds for real stable polynomials

4. Application to counting contingency tables

- The generating polynomial for contingency tables
- Capacity bounds for binary contingency tables
- General contingency tables

Contingency tables

Given vectors $\boldsymbol{\alpha} \in \mathbb{Z}_{+}^{m}$ and $\beta \in \mathbb{Z}_{+}^{n}$, a contingency table is a $m \times n$ matrix $M=\left(m_{i j}\right)$ with \mathbb{Z}_{+}entries such that

$$
\sum_{i=1}^{m} m_{i j}=\beta_{j} \quad \text { for all } j \quad \text { and } \quad \sum_{j=1}^{n} m_{i j}=\alpha_{i} \quad \text { for all } i
$$

Definition: $\mathrm{CT}(\boldsymbol{\alpha}, \boldsymbol{\beta}):=\#$ of contingency tables with "marginals" $(\boldsymbol{\alpha}, \boldsymbol{\beta})$.
E.g.: For $n=m, \mathrm{CT}(d \cdot \mathbf{1}, d \cdot \mathbf{1})$ is the number of (non-simple) d-regular bipartite graphs on $2 n$ vertices. (Similar interpretation more generally.)
E.g.: 2×3 table with marginals $\boldsymbol{\alpha}=(1,4)$ and $\boldsymbol{\beta}=(2,2,1)$.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 1 & 0 \\
2 & 1 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 1 \\
2 & 2 & 0
\end{array}\right]
$$

Definition: $\mathrm{BCT}(\boldsymbol{\alpha}, \boldsymbol{\beta}):=\#$ of contingency tables with "marginals" $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ and all entries either 0 or 1. E.g.: For $n=m, \operatorname{BCT}(\mathbf{1}, \mathbf{1})=n!$.

Contingency tables generating function

Contingency tables generating function:

$$
f(\boldsymbol{x}, \boldsymbol{y}):=\prod_{i=1}^{m} \prod_{j=1}^{n}\left(1+x_{i} y_{j}+\left(x_{i} y_{j}\right)^{2}+\cdots\right)=\sum_{\alpha, \boldsymbol{\beta}} \mathrm{CT}(\boldsymbol{\alpha}, \boldsymbol{\beta}) \cdot \boldsymbol{x}^{\alpha} \boldsymbol{y}^{\beta} .
$$

Why? Contingency table given by $M: m_{i j}=k \Longleftrightarrow\left(x_{i} y_{j}\right)^{k}$.
Binary contingency tables generating function:

$$
p(\boldsymbol{x}, \boldsymbol{y}):=\prod_{i=1}^{m} \prod_{j=1}^{n}\left(1+x_{i} y_{j}\right)=\sum_{\boldsymbol{\alpha}, \boldsymbol{\beta}} \mathrm{BCT}(\boldsymbol{\alpha}, \boldsymbol{\beta}) \cdot \boldsymbol{x}^{\alpha} \boldsymbol{y}^{\beta} .
$$

Now define $\gamma:=(m, m, \ldots, m)$ and consider:

$$
\tilde{p}(\boldsymbol{x}, \boldsymbol{y}):=\prod_{i=1}^{m} \prod_{j=1}^{n}\left(y_{j}+x_{i}\right)=\sum_{\boldsymbol{\alpha}, \boldsymbol{\beta}} \mathrm{BCT}(\boldsymbol{\alpha}, \boldsymbol{\beta}) \cdot \boldsymbol{x}^{\alpha} \boldsymbol{y}^{\gamma-\boldsymbol{\beta}} .
$$

Nice: Real stable polynomial with coefficients which count BCT.

Capacity bounds for binary contingency tables

Last slide: For $\boldsymbol{\lambda}:=(n, \ldots, n)$ and $\gamma:=(m, \ldots, m)$, consider:

$$
\tilde{p}(\boldsymbol{x}, \boldsymbol{y}):=\prod_{i=1}^{m} \prod_{j=1}^{n}\left(y_{j}+x_{i}\right)=\sum_{\boldsymbol{\alpha}, \boldsymbol{\beta}} \mathrm{BCT}(\boldsymbol{\alpha}, \boldsymbol{\beta}) \cdot \boldsymbol{x}^{\alpha} \boldsymbol{y}^{\boldsymbol{\gamma}-\boldsymbol{\beta}} \in \mathbb{R}_{+}^{(\lambda, \gamma)}[\boldsymbol{x}, \boldsymbol{y}] .
$$

Recall: For real stable $p \in \mathbb{R}_{+}^{\lambda}[\boldsymbol{x}]$ and $\boldsymbol{\mu} \in \mathbb{Z}_{+}^{n}$, we have

$$
p_{\mu} \geq \prod_{i=1}^{n}\binom{\lambda_{i}}{\mu_{i}} \frac{\mu_{i}^{\mu_{i}}\left(\lambda_{i}-\mu_{i}\right)^{\lambda_{i}-\mu_{i}}}{\lambda_{i}^{\lambda_{i}}} \operatorname{Cap}_{\mu}(p)
$$

Therefore: $\operatorname{BCT}(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is bounded below by

$$
\prod_{i=1}^{m}\binom{n}{\alpha_{i}} \frac{\alpha_{i}^{\alpha_{i}}\left(n-\alpha_{i}\right)^{n-\alpha_{i}}}{n^{n}} \prod_{j=1}^{n}\binom{m}{\beta_{j}} \frac{\beta_{j}^{\beta_{j}}\left(m-\beta_{j}\right)^{m-\beta_{j}}}{m^{m}} \operatorname{Cap}_{(\alpha, \gamma-\beta)}(\tilde{p}) .
$$

Sanity check: Counting permutations

Let's try $n=m$ and $\boldsymbol{\alpha}=\boldsymbol{\beta}=1$ (permutations):

$$
\operatorname{BCT}(\mathbf{1}, \mathbf{1}) \geq \prod_{i=1}^{n}\left(n \cdot \frac{(n-1)^{n-1}}{n^{n}}\right) \prod_{j=1}^{n}\left(n \cdot \frac{(n-1)^{n-1}}{n^{n}}\right) \operatorname{Cap}_{(\mathbf{1}, \boldsymbol{n}-\mathbf{1})}(\tilde{p})
$$

How to compute capacity? One option is to bound $\operatorname{Cap}_{(\mathbf{1}, \mathbf{1})}(\tilde{p})$ via:

$$
\inf _{\boldsymbol{x}, \boldsymbol{y}>0} \frac{\prod_{i=1}^{n} \prod_{j=1}^{n}\left(y_{j}+x_{i}\right)}{\boldsymbol{x}^{1} \boldsymbol{y}^{\boldsymbol{n}-\mathbf{1}}} \geq \prod_{i, j=1}^{n} \inf _{x_{i}, y_{j}>0}\left(\frac{y_{j}+x_{i}}{x_{i}^{\frac{1}{n}} y_{j}^{1-\frac{1}{n}}}\right) \geq n^{n}\left(\frac{n}{n-1}\right)^{n(n-1)}
$$

Put it all together:

$$
\begin{aligned}
\operatorname{BCT}(\mathbf{1}, \mathbf{1}) & \geq\left(\frac{n-1}{n}\right)^{2 n(n-1)} n^{n}\left(\frac{n}{n-1}\right)^{n(n-1)}=n^{n}\left(\frac{n-1}{n}\right)^{n(n-1)} \\
& \approx \frac{n!}{\sqrt{2 \pi n}} e^{n} \cdot e^{-(n-1)}=n!\cdot \frac{e}{\sqrt{2 \pi n}} .
\end{aligned}
$$

Decent approximation: Off by a factor of \sqrt{n}.

General contingency tables

Recall: Contingency tables generating function:

$$
f(\boldsymbol{x}, \boldsymbol{y}):=\prod_{i=1}^{m} \prod_{j=1}^{n}\left(1+x_{i} y_{j}+\left(x_{i} y_{j}\right)^{2}+\cdots\right)=\sum_{\boldsymbol{\alpha}, \boldsymbol{\beta}} \mathrm{CT}(\boldsymbol{\alpha}, \boldsymbol{\beta}) \cdot \boldsymbol{x}^{\alpha} \boldsymbol{y}^{\beta}
$$

Actually: We can cut off the series at $d:=\max \left\{\alpha_{i}, \beta_{j}\right\}$. Same as before:

$$
\tilde{f}_{d}(\boldsymbol{x}, \boldsymbol{y}):=\prod_{i=1}^{m} \prod_{j=1}^{n}\left(y_{j}^{d}+x_{i} y_{j}^{d-1}+\cdots+x_{i}^{d}\right) \cong \sum_{\boldsymbol{\alpha}, \boldsymbol{\beta} \leq \boldsymbol{d}} \mathrm{CT}(\boldsymbol{\alpha}, \boldsymbol{\beta}) \cdot \boldsymbol{x}^{\alpha} \boldsymbol{y}^{\boldsymbol{d}-\boldsymbol{\beta}} .
$$

Problem: What class does the polynomial $\sum_{k=0}^{d} x_{i}^{k} y_{j}^{d-k}$ fit into?
Answer: Class of denormalized Lorentzian polynomials. Bivariate homogeneous equivalent to log-concave coefficients.

Bonus: We are counting lattice points in various polytopes. By scaling and limiting, we can achieve lower bounds on volumes of these polytopes.
E.g.: Birkhoff polytope, flow polytopes, transportation polytopes

