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Polynomial notation:

R,R4,Z; := reals, non-negative reals, non-negative integers.
xP = T[; x!" and p < A'is entrywise.

R[x] := v.s. of real polynomials in n variables.

R4 [x] := v.s. of real polynomials with non-negative coefficients.
RA[x] := v.s. of polynomials of degree at most \; in x;.

For p € R[x], we write p(x) = -, pux*.

For d-homogeneous p € R[x], we write p(x) = > u|=d Pux".

d% = a% = Oy := derivative with respect to x, and 9% =[], 9%
supp(p) = support of p = the set of u € Z for which p,, # 0.

Newt(p) = Newton polytope of p = convex hull of the support of p
as a subset of R".
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Recall: The big three

The geometry of polynomials is generally an investigation of the
connections between the various properties of polynomials:

e Algebraic, via the roots/zeros of the polynomial.
o Combinatorial, via the coefficients of the polynomial.

@ Analytic, via the evaluations of the polynomial.

Why do we care? We use features of the interplay between these three
to prove facts about mathematical objects which a priori have nothing to
do with polynomials.

Typical method:
© Encode some object as a polynomial which has some nice properties.
@ Apply operations to that polynomial which preserve those properties.
© Extract information at the end which relates back to the object.
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Outline
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@ Real stable polynomials
@ Lorentzian/CLC polynomials
@ Polynomial capacity
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So far in the course: Real stable polynomials

Real stable polynomial p € R[x] = R[xq, ..., Xs]
e Definition: p(zi,...,z,) # 0 for all z; € H (upper half-plane).
@ Intuition: Polynomials with log-concavity properties.

@ Intuition: Generalizes real-rooted univariate polynomials, which have

ultra log-concave coefficients ((”73 is a log-concave sequence). Also,

k
strong Rayleigh inequalities are a crucial generalization.

Borcea-Brandén characterization of linear preservers
@ Method for determining if a linear operator preserves real stability.
@ Morally, T preserves stability iff its symbol does:

= A AT xH
-3 (B) e

Symb[T](x,z) := T lﬁ(xi + z;)
n<A

i=1

o Intuition: Apply the liner operator T to a “generic” polynomial.
o Eg.: p|, _,foracR, VypforveR], p(Ax) for Awith > 0 entries
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So far in the course: Lorentzian / CLC polynomials

Lorentzian / CLC polynomial d-homogeneous p € R [x]
e Definition: V,, ---V,, p is log-concave for all vi,..., v, € R].

e Definition: Matroidal support + all derivatives 9% - - - 9%"p with
|p| = d — 2 are quadratic forms with Lorentz signature.

@ Intuition: Generalizes real stability to further capture log-concavity:
for n = 2, Lorentzian/CLC is equivalent to ULC coefficients.

o Intuition: Lorentz signature is equivalent to a reverse
Cauchy-Schwarz inequality or Alexandrov-Fenchel inequality.

Preservers via [Brandén-Huh], [Anari-Liu-Oveis Gharan-Vinzant]
@ Same method for determining if a linear operator preserves Lorentzian.
@ Unfortunately not a characterization.

@ The [Symb[T] is Lorentzian == T preserves Lorentzian] direction
still holds. (The practical direction.)

e E.g.: V,pfor v eR"T, p(Ax) for A with > 0 entries
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So far in the course: Polynomial capacity

Recall: Given polynomial p with coefficients > 0 and any a: € R}, define

Capy(p) := inf PO) _ e PO)

x>0 X& x>0 X3 xg
Some basic facts:
e Cap,(p) > 0iff a € Newt(p).
e Cap,(p) = p(1) iff a = Vlog p(1).
o Cap,(p) > py for p € Z7.
Gurvits’ theorem: For n-homogeneous real stable p € Ry [xy, ..., x,],

Capy (ﬁxnlxn:o p)

v

(") camo)

. n!
Gurvits’ corollary: Cap;(p) > p1 > pr Capy(p).

Implies e"-approximation algorithm to the permanent, and other things...
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Outline

@ Coefficient bounds via capacity
@ Overview
@ Applications thus far
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What/why /how: Coefficient bounds via capacity

Recall: Given polynomial p with coefficients > 0 and any a: € R}, define
Cap,(p) := inf PX)

Want: Given polynomial p(x) = -, pux*, obtain bound of the form

Capu(p) > Pu > K()U“la cee Hun) ’ Capu(p)

Why we care: Combinatorial bounds when Capu(p) has explicit formula,
or else algorithmic bounds since Cap,,(p) is essentially a convex program.

How do we get such bounds? Upper bound easy; lower bound:
© Obtain capacity bounds on coefficients of univariate (or bivariate
homogeneous) polynomials.
@ Apply such bounds to p(y1,...,¥n-1,t) € Ry[t]
(or p(y1-5,...,¥n-1"5,t) € Ry[t,s]) for any fixed yi,...,yn—1 > 0.
© Take inf over yi,...,yy,—1 and induct.
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Applications we have seen

Capacity bounds for real stable, Lorentzian, denormalized Lorentzian.

Permanent (Gurvits): Given matrix A, define p(x) := [ 37/ ajx;:

n! —n
Capy(p) > per(A) = p1 > " Capy(p) > e " Capy(p).

When A is DS (doubly stochastic), we have Capy(p) = 1.

Mixed volume (Gurvits): Given convex compact set Ki,..., K, C R",
consider the polynomial p(x) := vol(3}_7_; x;K;) via Minkowski sum:

1 1 1
m Capl(p) > V(Kl, Ko, ..., Kn) = mpl > F Capl(p).
When (Ki,...,K,) is a “DS tuple”, we have Cap;(p) = 1.
Similar bounds for V(K{*,..., K§?) when K; C R and |u| = d in terms
of Cap,,(p), where K!" indicates yu; copies of K;.

Also: perfect matchings, mixed discriminant, contingency tables
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© Computing capacity bounds on coefficients
@ Univariate bounds
@ Univariate bounds for real-rooted/Lorentzian polynomials
@ Multivariate bounds for real stable polynomials
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Univariate bounds

Recall: How do we get such bounds?
© Obtain capacity bounds on coefficients of univariate (or
bivariate homogeneous) polynomials.
@ Apply such bounds to p(y1,...,¥n—1,t) € Ry[t]
(or p(y1-5,.--,¥Yn-1"5,t) € Ry[t,s]) for any fixed yi,...,yn—1 > 0.
© Take inf over yi,...,yy,—1 and induct.

First: How are the univariate and bivariate homogeneous cases related?
Capacity relation for p(t) = P(t,1) where P is homogeneous:

d i d t\i d
i—o Pit . i—oPilg) -
Capk(P) — inf Zlfop — inf oP (s) 5

K = m K
t>0 t t,s>0 (E) . gd

= Cap(x,g—k)(P)-

Now: How do we obtain univariate bounds?
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Univariate bounds

Lemma (Brandén-L-Pak '20)

N\d
Let q,w € Ri[t] be such that (%,) 0 forms a log-concave sequence. For
all k € {0,...,d}, we have

=

Wy
> < . }
dk = Capk(w) Capk(Q)

Proof sketch:
@ WLOG gk = wk =1 by scaling: now want Cap,(q) < Cap,(w).

- - - qk+j Ak+1 J - - 9k
@ Log-concavity implies W < (—) for all j (since = 1).

— \ Wk+1
d—k d—k i G+ | ¢
q(t) i Ak+1 J w (Wk 1 )
@ =D ant! < Y wiyj ) = ——
t P P Wigk+4+1 qk+1 |
j=—k Jj=—k West t

Q Since ;’ka—i > 0 is fixed, take inf over t > 0 to get the result.
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Univariate bounds for real-rooted/Lorentzian polynomials

. . Wi qi
Previous slide: qx > ———— - C h ~L log- .
revious slide: g, > Capy (W) apy(q) whenever Ui log-concave
Recall: Real-rooted = ULC (ultra log-concave) coefficients.

For bivariate homogeneous: Lorentzian <= ULC coefficients.

ULC coefficients: (’T’jis log-concave for g € RY[t] = w; = (7)
J

If q(t) € R9[t] has ULC coefficients, then for all k we have

d\ kk(d — k)
Qk 2 (k) % Capy(q).

Proof: By calculus, Cap,(w) = tinf ( =
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Multivariate bounds for real stable polynomials

Want: Bound on coefficient p,, for some pu € Z1 .
Given real stable p € ]Rj\r[xl, ..., Xp], we have that

q(t) == p(y1, ... yn-1,t) € RY[t]

is real-rooted for all y1,...,yp—1 > 0 = ULC coeffcients.

Hn _ )\n_llzn
Previous bound: g, > (2:) " (An X\itn) Cap,,,(q).

Next: q,, = ﬁ . [(%n"’x,,:o P} (y) and

ply.t) _ . o Py Xn)

Ca = inf
pMn (q) >0 thn xn>0 X#n

Since g, = ﬁ - {0f<‘n”|xn:0 p] (y) is real stable as a function of y, we can
induct by dividing through by yj" - - -yfffll and then take inf over y > 0.
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Putting it all together

Last slide: For Ky(k) := (Z)%, we have
1

m ' 62" xn=0 p(y) = Qua, 2 K/\n('u“") ) Capﬂn(q)
- P(Y; xn)
Kot o, P
Now: Divide through by yi* ---y/"1* and take inf to get
10 —oP(Y) . Y
7| : Inf ,U‘lxn—O/JJn—l 2 K)\n(ll’tn) : Inf M1 p(y H'nn—)l Hn*
ol y>0 iooeyna y,xn>0 Y1 Yal1 Xn

Theorem (Gurvits)

Given a real stable p € R} [x] and p € Z"., we have

>\n N#"()\n - /«Ln))\n_un
- ) > (#) o Cap,(p)-

1
Cap(lul:'ﬂnu/nfl) (m ’ 8)/?;1,1
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Coefficient bounds for real stable polynomials

Next: Use induction to obtain a general coefficient bound.

Corollary (Gurvits)

Given a real stable p € R} [x] and p € Z", we have

(N T — )N
Pu > [Hl ( ) o - Cap,,(p)-

i f

Base case: Univariate case: py > (d)% Capy(p).

Induction: Apply bound to g := % : 8)‘!"”]Xn:0p and v = (p1,. .., fn-1):

n—1 i P
A\ TN — i)

! - Cap,(q).

i:l_Il (m) v P.(q)

Now apply theorem from previous slide and combine:
)\n lg‘n >\n_ n >\n_ll’/n
Cap, (q) = Cap, (i - %il,—op) > () “="Co ke Cap, (p).
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@ Application to counting contingency tables
@ The generating polynomial for contingency tables
@ Capacity bounds for binary contingency tables
@ General contingency tables

Jonathan Leake (TU Berlin) More Coefficient Bounds Winter 2020-2021 19 /24



Contingency tables

Given vectors a € Z7" and 3 € Z'}, a contingency table isa m x n
matrix M = (mj;) with Z entries such that

m n
> my=p forallj and > mj=a; foralli.
i=1 j=1

Definition: CT(«, 3) := # of contingency tables with “marginals” («, 3).

E.g.: Forn=m, CT(d-1,d-1) is the number of (non-simple) d-regular
bipartite graphs on 2n vertices. (Similar interpretation more generally.)

E.g.: 2 x 3 table with marginals a = (1,4) and 8 = (2,2,1).
100 010 0 01
1 2 17 (2 1 17 (2 20

Definition: BCT(a, B) := # of contingency tables with “marginals”
(a, B) and all entries either 0 or 1. E.g.: For n=m, BCT(1,1) = n!.
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Contingency tables generating function

Contingency tables generating function:

H H (14 5xy; + Gayp)? + -+ ) = 3 CT(ex, B) - xyP
a.f

i=1j=1

f(x,y)

Why? Contingency table given by M: mj = k < (x;y;)".

Binary contingency tables generating function:

p(x,y): HH(I—i—x,yJ)—ZBCT )-x"‘yﬁ.

i=1j=1

Now define v := (m, m, ..., m) and consider:

HH yj—i-x,)—ZBCT ay1=B,

i=1j=1

Nice: Real stable polynomial with coefficients which count BCT.
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Capacity bounds for binary contingency tables

Last slide: For A :=(n,...,n) and v := (m,..., m), consider:
B(x,y) H H (yj+x)=> BCT(a,B y' Pe ]R()"V)[x yl.
i=1j=1 a,B

Recall: For real stable p € R}[x] and p € Z7, we have

o= H ( > )\/\I,L’) — Cap,.(p)-

i

Therefore: BCT(a, 3) is bounded below by

m Qi ALty n IBBJ _ B m—3; )
1—[1 <:i> o (n nf‘) 1—[1 <gj> J (m mmJ) Cap(a,»y_g)(P)-
i= j=
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Sanity check: Counting permutations

Let's try n = m and a = 3 = 1 (permutations):
n n—1)""1\ 2 n—1)"1 .
o= 1 (n O3 ) o0 s
i=1 j=1

How to compute capacity? One option is to bound Cap(y 1)(p) via:

n n n —1
, i1 [ (v + % : [+ Xi n_\"h
inf HI 1 i 1 (};J ’) Z inf y{ ’1 Z n" ( ) .
x,y>0 xtyn— Xy >0 a» l=n n—1

Put it all together:

_ 2n(n—1) n(n—1) _ n(n—1)
BCT(1,1) > <” 1) n"( n ) :n"<” 1)
n n—1 n

\V2mn . N '.\/27rn'

Decent approximation: Off by a factor of \/n.
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General contingency tables

Recall: Contingency tables generating function:

f(x.y): HH(1+x,y, () + ) = 3 CT(a, B) - xy”
o,

i=1j=1

Actually: We can cut off the series at d := max{a;, 5;}. Same as before:
-1 d\ ~ d—

fd(xy HH(}/J +x,yJ +~'+x,-): Z CT(e,B) - x%y B,

i=1j=1 a,B<d

Problem: What class does the polynomial 3¢_, x,-kyjd_k fit into?

Answer: Class of denormalized Lorentzian polynomials. Bivariate

homogeneous equivalent to log-concave coefficients.

Bonus: We are counting lattice points in various polytopes. By scaling

and limiting, we can achieve lower bounds on volumes of these polytopes.

E.g.: Birkhoff polytope, flow polytopes, transportation polytopes
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