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Notation

Polynomial notation:
R,R+,Z+ := reals, non-negative reals, non-negative integers.
xµ :=

∏
i xµi

i and µ ≤ λ is entrywise.
R[x] := v.s. of real polynomials in n variables.
R+[x] := v.s. of real polynomials with non-negative coefficients.
Rλ[x] := v.s. of polynomials of degree at most λi in xi .
For p ∈ R[x], we write p(x) =

∑
µ pµxµ.

For d-homogeneous p ∈ R[x], we write p(x) =
∑
|µ|=d pµxµ.

d
dx = ∂

∂x = ∂x := derivative with respect to x , and ∂µ
x :=

∏
i ∂

µixi .
supp(p) = support of p = the set of µ ∈ Zn

+ for which pµ 6= 0.
Newt(p) = Newton polytope of p = convex hull of the support of p
as a subset of Rn.
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Recall: The big three

The geometry of polynomials is generally an investigation of the
connections between the various properties of polynomials:

Algebraic, via the roots/zeros of the polynomial.
Combinatorial, via the coefficients of the polynomial.
Analytic, via the evaluations of the polynomial.

Why do we care? We use features of the interplay between these three
to prove facts about mathematical objects which a priori have nothing to
do with polynomials.

Typical method:
1 Encode some object as a polynomial which has some nice properties.
2 Apply operations to that polynomial which preserve those properties.
3 Extract information at the end which relates back to the object.
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So far in the course: Real stable polynomials
Real stable polynomial p ∈ R[x] = R[x1, . . . , xn]

Definition: p(z1, . . . , zn) 6= 0 for all zi ∈ H+ (upper half-plane).
Intuition: Polynomials with log-concavity properties.
Intuition: Generalizes real-rooted univariate polynomials, which have
ultra log-concave coefficients ( pk

(d
k) is a log-concave sequence). Also,

strong Rayleigh inequalities are a crucial generalization.

Borcea-Brändén characterization of linear preservers
Method for determining if a linear operator preserves real stability.
Morally, T preserves stability iff its symbol does:

Symb[T ](x, z) := T
[ n∏

i=1
(xi + zi )λi

]
=
∑
µ≤λ

(
λ

µ

)
zλ−µT [xµ].

Intuition: Apply the liner operator T to a “generic” polynomial.
E.g.: p|xi =a for a ∈ R, ∇v p for v ∈ Rn

+, p(Ax) for A with ≥ 0 entries
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So far in the course: Lorentzian / CLC polynomials
Lorentzian / CLC polynomial d-homogeneous p ∈ R+[x]

Definition: ∇v1 · · · ∇vk p is log-concave for all v1, . . . , vk ∈ Rn
+.

Definition: Matroidal support + all derivatives ∂µ1x1 · · · ∂
µn
xn p with

|µ| = d − 2 are quadratic forms with Lorentz signature.
Intuition: Generalizes real stability to further capture log-concavity:
for n = 2, Lorentzian/CLC is equivalent to ULC coefficients.
Intuition: Lorentz signature is equivalent to a reverse
Cauchy-Schwarz inequality or Alexandrov-Fenchel inequality.

Preservers via [Brändén-Huh], [Anari-Liu-Oveis Gharan-Vinzant]
Same method for determining if a linear operator preserves Lorentzian.
Unfortunately not a characterization.
The [Symb[T ] is Lorentzian =⇒ T preserves Lorentzian] direction
still holds. (The practical direction.)
E.g.: ∇v p for v ∈ Rn

+, p(Ax) for A with ≥ 0 entries
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So far in the course: Polynomial capacity
Recall: Given polynomial p with coefficients ≥ 0 and any α ∈ Rn

+, define

Capα(p) := inf
x>0

p(x)
xα

= inf
x>0

p(x)
xα1

1 · · · x
αnn
.

Some basic facts:
Capα(p) > 0 iff α ∈ Newt(p).
Capα(p) = p(1) iff α = ∇ log p(1).
Capµ(p) ≥ pµ for µ ∈ Zn

+.

Gurvits’ theorem: For n-homogeneous real stable p ∈ R+[x1, . . . , xn],

Cap1

(
∂xn |xn=0 p

)
≥
(n − 1

n

)n−1
Cap1(p).

Gurvits’ corollary: Cap1(p) ≥ p1 ≥
n!
nn Cap1(p).

Implies en-approximation algorithm to the permanent, and other things...
Jonathan Leake (TU Berlin) More Coefficient Bounds Winter 2020-2021 8 / 24



Outline

1 So far in the course
Real stable polynomials
Lorentzian/CLC polynomials
Polynomial capacity

2 Coefficient bounds via capacity
Overview
Applications thus far

3 Computing capacity bounds on coefficients
Univariate bounds
Univariate bounds for real-rooted/Lorentzian polynomials
Multivariate bounds for real stable polynomials

4 Application to counting contingency tables
The generating polynomial for contingency tables
Capacity bounds for binary contingency tables
General contingency tables

Jonathan Leake (TU Berlin) More Coefficient Bounds Winter 2020-2021 9 / 24



What/why/how: Coefficient bounds via capacity
Recall: Given polynomial p with coefficients ≥ 0 and any α ∈ Rn

+, define

Capα(p) := inf
x>0

p(x)
xα

= inf
x>0

p(x)
xα1

1 · · · x
αnn
.

Want: Given polynomial p(x) =
∑

µ pµxµ, obtain bound of the form

Capµ(p) ≥ pµ ≥ K (µ1, . . . , µn) · Capµ(p).

Why we care: Combinatorial bounds when Capµ(p) has explicit formula,
or else algorithmic bounds since Capµ(p) is essentially a convex program.

How do we get such bounds? Upper bound easy; lower bound:
1 Obtain capacity bounds on coefficients of univariate (or bivariate

homogeneous) polynomials.
2 Apply such bounds to p(y1, . . . , yn−1, t) ∈ R+[t]

(or p(y1 · s, . . . , yn−1 · s, t) ∈ R+[t, s]) for any fixed y1, . . . , yn−1 > 0.
3 Take inf over y1, . . . , yn−1 and induct.
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Applications we have seen
Capacity bounds for real stable, Lorentzian, denormalized Lorentzian.

Permanent (Gurvits): Given matrix A, define p(x) :=
∏n

i=1
∑n

j=1 aijxj :

Cap1(p) ≥ per(A) = p1 ≥
n!
nn Cap1(p) ≥ e−n Cap1(p).

When A is DS (doubly stochastic), we have Cap1(p) = 1.

Mixed volume (Gurvits): Given convex compact set K1, . . . ,Kn ⊂ Rn,
consider the polynomial p(x) := vol(

∑n
i=1 xi Ki ) via Minkowski sum:

1
n! Cap1(p) ≥ V (K1,K2, . . . ,Kn) = 1

n!p1 ≥
1

nn Cap1(p).

When (K1, . . . ,Kn) is a “DS tuple”, we have Cap1(p) = 1.

Similar bounds for V (Kµ1
1 , . . . ,Kµdn ) when Ki ⊂ Rd and |µ| = d in terms

of Capµ(p), where Kµi
i indicates µi copies of Ki .

Also: perfect matchings, mixed discriminant, contingency tables
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Univariate bounds

Recall: How do we get such bounds?
1 Obtain capacity bounds on coefficients of univariate (or

bivariate homogeneous) polynomials.
2 Apply such bounds to p(y1, . . . , yn−1, t) ∈ R+[t]

(or p(y1 · s, . . . , yn−1 · s, t) ∈ R+[t, s]) for any fixed y1, . . . , yn−1 > 0.
3 Take inf over y1, . . . , yn−1 and induct.

First: How are the univariate and bivariate homogeneous cases related?
Capacity relation for p(t) = P(t, 1) where P is homogeneous:

Capk(p) = inf
t>0

∑d
i=0 pi t i

tk = inf
t,s>0

∑d
i=0 pi

( t
s
)i · sd( t

s
)k · sd

= Cap(k,d−k)(P).

Now: How do we obtain univariate bounds?
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Univariate bounds

Lemma (Brändén-L-Pak ’20)

Let q,w ∈ Rd
+[t] be such that

(
qj
wj

)d

j=0
forms a log-concave sequence. For

all k ∈ {0, . . . , d}, we have

qk ≥
wk

Capk(w) · Capk(q).

Proof sketch:
1 WLOG qk = wk = 1 by scaling: now want Capk(q) ≤ Capk(w).
2 Log-concavity implies qk+j

wk+j
≤
(

qk+1
wk+1

)j
for all j (since qk

wk
= 1).

3
q(t)
tk =

d−k∑
j=−k

qk+jt j ≤
d−k∑
j=−k

wk+j

( qk+1
wk+1

· t
)j

=
w
(

qk+1
wk+1
· t
)

(
qk+1
wk+1
· t
)k .

4 Since qk+1
wk+1

> 0 is fixed, take inf over t > 0 to get the result.
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Univariate bounds for real-rooted/Lorentzian polynomials

Previous slide: qk ≥
wk

Capk(w) · Capk(q) whenever qj
wj

log-concave.

Recall: Real-rooted =⇒ ULC (ultra log-concave) coefficients.

For bivariate homogeneous: Lorentzian ⇐⇒ ULC coefficients.

ULC coefficients: qj

(d
j )

is log-concave for q ∈ Rd
+[t] =⇒ wj =

(d
j
)
.

Corollary
If q(t) ∈ Rd

+[t] has ULC coefficients, then for all k we have

qk ≥
(

d
k

)
kk(d − k)d−k

dd Capk(q).

Proof: By calculus, Capk(w) = inf
t>0

(t + 1)d

tk = dd

kk(d − k)d−k .
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Multivariate bounds for real stable polynomials
Want: Bound on coefficient pµ for some µ ∈ Zn

+.

Given real stable p ∈ Rλ
+[x1, . . . , xn], we have that

q(t) := p(y1, . . . , yn−1, t) ∈ Rλn
+ [t]

is real-rooted for all y1, . . . , yn−1 > 0 =⇒ ULC coeffcients.

Previous bound: qµn ≥
(
λn
µn

)
µµn

n (λn − µn)λn−µn

λλnn
Capµn (q).

Next: qµn = 1
µn! ·

[
∂µn

xn |xn=0 p
]

(y) and

Capµn (q) = inf
t>0

p(y , t)
tµn

= inf
xn>0

p(y , xn)
xµn

n
.

Since qµn = 1
µn! ·

[
∂µn

xn |xn=0 p
]

(y) is real stable as a function of y , we can
induct by dividing through by yµ1

1 · · · y
µn−1
n−1 and then take inf over y > 0.
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Putting it all together
Last slide: For Kd (k) :=

(d
k
)kk (d−k)d−k

dd , we have
1
µn! · ∂

µn
xn

∣∣
xn=0 p(y) = qµn ≥ Kλn (µn) · Capµn (q)

= Kλn (µn) · inf
xn>0

p(y , xn)
xµn

n
.

Now: Divide through by yµ1
1 · · · y

µn−1
n−1 and take inf to get

1
µn! · inf

y>0

∂µn
xn |xn=0 p(y)

yµ1
1 · · · y

µn−1
n−1

≥ Kλn (µn) · inf
y ,xn>0

p(y , xn)
yµ1

1 · · · y
µn−1
n−1 xµn

n
.

Theorem (Gurvits)
Given a real stable p ∈ Rλ

+[x] and µ ∈ Zn
+, we have

Cap(µ1,...,µn−1)

( 1
µn! · ∂

µn
xn

∣∣
xn=0 p

)
≥
(
λn
µn

)
µµn

n (λn − µn)λn−µn

λλnn
Capµ(p).
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Coefficient bounds for real stable polynomials
Next: Use induction to obtain a general coefficient bound.

Corollary (Gurvits)
Given a real stable p ∈ Rλ

+[x] and µ ∈ Zn
+, we have

pµ ≥
[ n∏

i=1

(
λi
µi

)
µµi

i (λi − µi )λi−µi

λλi
i

]
· Capµ(p).

Base case: Univariate case: pk ≥
(d

k
)kk (d−k)d−k

dd Capk(p).
Induction: Apply bound to q := 1

µn! · ∂
µn
xn |xn=0 p and ν := (µ1, . . . , µn−1):

pµ = qν ≥
[n−1∏

i=1

(
λi
µi

)
µµi

i (λi − µi )λi−µi

λλi
i

]
· Capν(q).

Now apply theorem from previous slide and combine:

Capν(q) = Capν

(
1
µ! · ∂

µn
xn |xn=0 p

)
≥
(λn
µn

)µµn
n (λn−µn)λn−µn

λλn
n

Capµ(p).
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Contingency tables
Given vectors α ∈ Zm

+ and β ∈ Zn
+, a contingency table is a m × n

matrix M = (mij) with Z+ entries such that

m∑
i=1

mij = βj for all j and
n∑

j=1
mij = αi for all i .

Definition: CT(α,β) := # of contingency tables with “marginals” (α,β).

E.g.: For n = m, CT(d · 1, d · 1) is the number of (non-simple) d-regular
bipartite graphs on 2n vertices. (Similar interpretation more generally.)

E.g.: 2× 3 table with marginals α = (1, 4) and β = (2, 2, 1).[
1 0 0
1 2 1

]
,

[
0 1 0
2 1 1

]
,

[
0 0 1
2 2 0

]

Definition: BCT(α,β) := # of contingency tables with “marginals”
(α,β) and all entries either 0 or 1. E.g.: For n = m, BCT(1, 1) = n!.
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Contingency tables generating function
Contingency tables generating function:

f (x, y) :=
m∏

i=1

n∏
j=1

(
1 + xi yj + (xi yj)2 + · · ·

)
=
∑
α,β

CT(α,β) · xαyβ.

Why? Contingency table given by M: mij = k ⇐⇒ (xi yj)k .

Binary contingency tables generating function:

p(x, y) :=
m∏

i=1

n∏
j=1

(1 + xi yj) =
∑
α,β

BCT(α,β) · xαyβ.

Now define γ := (m,m, . . . ,m) and consider:

p̃(x, y) :=
m∏

i=1

n∏
j=1

(yj + xi ) =
∑
α,β

BCT(α,β) · xαyγ−β.

Nice: Real stable polynomial with coefficients which count BCT.
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Capacity bounds for binary contingency tables

Last slide: For λ := (n, . . . , n) and γ := (m, . . . ,m), consider:

p̃(x, y) :=
m∏

i=1

n∏
j=1

(yj + xi ) =
∑
α,β

BCT(α,β) · xαyγ−β ∈ R(λ,γ)
+ [x, y ].

Recall: For real stable p ∈ Rλ
+[x] and µ ∈ Zn

+, we have

pµ ≥
n∏

i=1

(
λi
µi

)
µµi

i (λi − µi )λi−µi

λλi
i

Capµ(p).

Therefore: BCT(α,β) is bounded below by

m∏
i=1

(
n
αi

)
ααi

i (n − αi )n−αi

nn

n∏
j=1

(
m
βj

)
β
βj
j (m − βj)m−βj

mm Cap(α,γ−β)(p̃).
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Sanity check: Counting permutations
Let’s try n = m and α = β = 1 (permutations):

BCT(1, 1) ≥
n∏

i=1

(
n · (n − 1)n−1

nn

) n∏
j=1

(
n · (n − 1)n−1

nn

)
Cap(1,n−1)(p̃).

How to compute capacity? One option is to bound Cap(1,1)(p̃) via:

inf
x,y>0

∏n
i=1

∏n
j=1 (yj + xi )

x1yn−1 ≥
n∏

i ,j=1
inf

xi ,yj>0

 yj + xi

x
1
n

i y1− 1
n

j

 ≥ nn
( n

n − 1

)n(n−1)
.

Put it all together:

BCT(1, 1) ≥
(n − 1

n

)2n(n−1)
nn
( n

n − 1

)n(n−1)
= nn

(n − 1
n

)n(n−1)

≈ n!√
2πn

en · e−(n−1) = n! · e√
2πn

.

Decent approximation: Off by a factor of
√

n.
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General contingency tables
Recall: Contingency tables generating function:

f (x, y) :=
m∏

i=1

n∏
j=1

(
1 + xi yj + (xi yj)2 + · · ·

)
=
∑
α,β

CT(α,β) · xαyβ.

Actually: We can cut off the series at d := max{αi , βj}. Same as before:

f̃d (x, y) :=
m∏

i=1

n∏
j=1

(
yd

j + xi yd−1
j + · · ·+ xd

i

)
∼=

∑
α,β≤d

CT(α,β) · xαyd−β.

Problem: What class does the polynomial
∑d

k=0 xk
i yd−k

j fit into?

Answer: Class of denormalized Lorentzian polynomials. Bivariate
homogeneous equivalent to log-concave coefficients.

Bonus: We are counting lattice points in various polytopes. By scaling
and limiting, we can achieve lower bounds on volumes of these polytopes.

E.g.: Birkhoff polytope, flow polytopes, transportation polytopes
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