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The null-cone problem
Let π : G → GL(V ) be a representation of a group G (i.e., π is a group
homomorphism and V is a vector space).

Definition: An orbit of v ∈ V is the set Ov := {π(g)v : g ∈ G} ⊂ V .

Definition: The null-cone of V or π is the set {v : 0 ∈ Ov}.

[Hilbert], [Mumford ’65]: v is in the null-cone iff for every non-constant
homogeneous G-invariant polynomial p on V we have p(v) = 0.

E.g.: v in null-cone =⇒ π(gi )v → 0 =⇒ p(v) = p(π(gi )v) = p(0) = 0.

[Kempf-Ness ’79]: v is not in the null-cone iff µ(w) = 0 for some
w ∈ Ov , where µ is the moment map of π.

Moment map: Something like the “gradient” of the action of π at g = id:

“µ(w) = ∇|X=0 log ‖π(eX )w‖”.

Convex programming: f = ‖w‖ attains minimum at w0 iff ∇f (w0) = 0.
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The moment map and moment polytope

Throughout: Think G = GLn(C) or G = Tn with π : G → GL(V ).

Definition: The moment map µ(v) for v ∈ V is defined via

〈H, µ(v)〉 := ∂t |t=0 log ‖π(etH)v‖,

and µ(v) is Hermitian for GLn(C) or a real (diagonal) vector for Tn.

Idea: µ(v) is the “gradient” of log ‖π(eX )v‖ at X = 0.

Moment polytope: ∆(v) := {eig(µ(w)) : w ∈ Ov} is a convex polytope.

Kempf-Ness: v not in null-cone iff µ(w) = 0 for a w ∈ Ov iff 0 ∈ ∆(v).

Recall: In the commutative case (G = Tn), we have:
infg∈G ‖π(g) · v‖2

2 = infx>0
∑

k |ck |2x2ωk is a capacity problem.
Kempf-Ness: Cap0(

∑
k |ck |2x2ωk ) > 0 iff 0 ∈ Newt(

∑
k |ck |2x2ωk ).

Roughly equivalent to polynomial capacity.
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Invariant-theoretic capacity
Last slide: infg ‖π(g)v‖ is a capacity problem in the commutative case.

In more general cases, let’s just make this the definition:

Cap0(v) := inf
g∈G
‖π(g)v‖.

“Non-commutative” capacity, “invariant-theoretic” capacity, etc.

Also called non-commutative geometric programming since the
commutative case captures unconstrained geometric programming (see
[Bürgisser-Li-Nieuwboer-Walter ’20]).

Kempf-Ness: Cap0(v) > 0 iff 0 is in the moment polytope =⇒
Generalization of the same statement for polynomial capacity.

Recall: infy∈Rn log
∑n

k=1 |ck |2e〈y ,2ωk〉 is a convex program. Can we do
the same thing to non-commutative capacity?

Appears to be “no”... but general capacity is still geodesically convex.
And, there is a scaling-type algorithm.
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Scaling-type algorithm
Recall the scaling-type algo, where the measure of progress is µ = Cap0:

1 “Preprocess”: Set g0 = id.
2 Iterations: Geodesic gradient descent, Taylor approx, “trust-region”

methods... I.e.: Natural analogs to convex Euclidean techniques.
3 Approximation: How close do we need to get before stopping?

Approximation step is key to determine computational complexity.

Theorem [BFGOWW ’19]: For ‖v‖ = 1, we have

1− ‖µ(v)‖
γ(π) ≤ [Cap0(v)]2 ≤ 1− ‖µ(v)‖2

4N(π)2 .

Corollary: 0 ∈ ∆(v) iff ∆(v) contains a point smaller than γ(π).
(This γ(π) is how close we must get before stopping.)

Definition: The weight margin γ(π) is the minimum distance between 0
and any subset of the “weights” whose convex hull does not contain 0.
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Weight margin examples

Last slide: The weight margin γ(π) is the minimum distance between 0
and any subset of the “weights” whose convex hull does not contain 0.

Matrix scaling: Action of (STn)2 via left-right action on matrices.
γ(π) ≥ 1

poly(n) via [Linial-Samorodnitsky-Wigderson ’00].

Operator scaling: Action of (SLn(C))2 on (M1, . . . ,M`) via simultaneous
left-right action. γ(π) ≥ 1

poly(n) via [Gurvits ’04], [GGOW ’15].

Tensor scaling for 3-tensors: Action of (GLn(C))3 on 3-tensors.
γ(π) ≤ 2−poly(n) via [Franks-Reichenbach ’21] (the other day).

Last result: Negative result for this method. Open: Other methods?

Real stable polynomials formulation: Given a real stable polynomial
with 1 not in its Newton polytope, how far away can Newton polytope be?
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Weight margin for real stable polynomials
Theorem [BFGOWW ’19]: For ‖v‖ = 1, we have

Cap0(v) = inf
g∈G
‖π(g)v‖2 ≥

(
1− ‖µ(v)‖

γ(π)

)1/2
.

Theorem [L-Gurvits ’20]: Fix an n-homogeneous n-variate real stable p
with non-negative coefficients. If p(1) = 1 and ‖1−∇p(1)‖1 < 2, then

Cap1(p) = inf
x>0

p(x)
x1 ≥

(
1− ‖1−∇p(1)‖1

2

)n
.

Corollary: If 1 6∈ Newt(p), then ‖1− Newt(p)‖1 ≥ 2.

Easy: (Kempf-Ness) 1 6∈ Newt(p) iff Cap1(p) = 0.
=⇒ Above bound cannot hold.
=⇒ ‖1−∇p(1)‖1 ≥ 2.

Finally: “Scale” p to have marginals close to the boundary of Newt(p).

Corollary: Nice weight margin for special subclass of polynomials. Can
we do something similar in the more general non-commutative case?
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Scaling for real stable polynomials
Proof: Take any α in the relative interior of Newt(p).

Capα(p) > 0 and there is a y > 0 such that p(y)
yα = Capα(p).

Defining q(x) := p(y◦x)
p(y) , we have

Capα(q) = inf
x>0

p(y ◦ x)
xα · p(y) = yα

p(y) · inf
x>0

p(y ◦ x)
(y ◦ x)α = yα

p(y) ·Capα(p) = 1

which implies ∇q(1) = α.
q is the scaling of p which makes the marginals equal to α.
Now: Newt(q) = Newt(p) and ∇q(1) = α =⇒ ‖1−α‖1 ≥ 2.

Works for any α in relative interior of Newt(p), so ‖1− Newt(p)‖1 ≥ 2.

Scaling step: Precomposing by y updates “column sums”:

M →
n∏

i=1

n∑
j=1

mijxj →
n∏

i=1

n∑
j=1

mijyjxj → M · diag(y).

Then: Dividing by p(y) updates “row sums”:
∏

i
∑

j mij · 1 = 1.
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An aside: Orbit closure of polynomial scaling

Fix real stable p(x1, . . . , xn) and scale by y > 0: p → q := p(y◦x)
p(y) .

First: Since y > 0, we have that supp(q) = supp(p).

Question: What supports can appear in the closure?

Answer: Precisely the collection of faces of Newt(p) intersected with Zn.

Proof: First, real stable polynomials have special “convexity property”:
If x ∈ Zn ∩ Newt(p), then x ∈ supp(p).

Fix p(x) =
∑
µ pµxµ =⇒ scaling by y is q(x) =

∑
µ

pµyµxµ∑
µ

pµyµ .

Consider yt := etw for any w ∈ Rn =⇒ qt(x) =
∑

µ
pµet〈w,µ〉xµ∑

µ
pµet〈w,µ〉 .

As t →∞, terms which dominate are those for which 〈w ,µ〉 is maximized.
Corresponds precisely to the faces of Newt(p) intersected with supp(p).

Similar situation for torus actions in general (Levent’s talk yesterday).
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Polynomial capacity
Given a polynomial p ∈ R+[x1, . . . , xn] and α ∈ Rn

+, we define

Capα(p) := inf
x>0

p(x)
xα = inf

y∈Rn

∑
µ∈supp(p)

pµe〈y ,µ−α〉.

Some basic properties:
Log-convex program as function of y ∈ Rn (geometric programming).
Capα(p) > 0 iff α ∈ Newt(p).

Kempf-Ness interpretation: α ∈ Newt(p) iff gradient = 0 can
achieved when optimizing the objective.
Entropy interpretation: When p(1) = 1, − log Capα(p) is the
entropy of a distribution on supp(p) with expectation α.

If p(1) = 1, then Capα(p) = 1 iff ∇p(1) = α.
Entropy interpretation: − log Capα(p) is the minimum relative
entropy of a distribution on supp(p) with expectation α.
Scaling interpretation: Cap was the measure of progress: once
maximized, we are already scaled correctly.
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Capacity and real stable / Lorentzian polynomials
Gurvits’ theorem: Real stable (or Lorentzian) polynomial p with
non-negative coefficients in n variables of homogeneous degree n:

p1 ≥
n!
nn · Cap1 .

Corollary: Doubly stochastic p =⇒ p1 ≥ n!
nn (permanent VdW bound).

[Anari-Oveis Gharan], [Gurvits-L]: Real stable p, q of degree at most λk
in xk , and α ∈ Rn

+:

〈p, q〉 =
∑
µ

(
λ

µ

)−1

pµqµ ≥ K (α,λ) · Capα(p) Capα(q).

[Anari-Liu-Oveis Gharan-Vinzant]: Similar bound for Lorentzian / CLC.

[Gurvits-L]: T preserves real stability and α,β ∈ Rn
+:

Capβ(T [p])
Capα(p) ≥ K (α,β) · Cap(β,α)(Symb[T ]).
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Applications of polynomial capacity
Applications include bounds/approximations for:

Permanent and mixed discriminant (Gurvits): T (p) = ∂xn |xn=0 p
Contingency tables (Barvinok, Barvinok-Hartigan, Gurvits,
Brändén-L-Pak) and Eulerian orientations (Csikvári-Schweitzer):

T (p) = ∂S
x p for specially chosen S

Biregular bipartite k-matchings (Gurvits-L):

T (p) =
∑

S∈([n]
k ) ∂S

x p

Counting/optimization on stable matroids (Straszak-Vishnoi,
Anari-Oveis Gharan) and intersection of two general matroids
(Anari-Oveis Gharan-Vinzant):

T (p) =
∑

B∈M ∂B
x p
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Entropic capacity
Dual formulation of polynomial capacity: p(1) = 1, consider a
distribution µ on supp(p) given by µ(κ) = pκ. Then − log Capα(p) =

inf
E[ν]=α

DKL(ν‖µ) = inf
E[ν]=α

∑
κ∈supp(µ)

[
ν(κ)
µ(κ) log ν(κ)

µ(κ)

]
µ(κ).

where ν has support contained in supp(µ).

Allows for extension to continuous case: Fix a measure µ supported on
Ω ⊂ Rn, and pick some θ ∈ hull(Ω):

inf
ν=φ·µ
E[ν]=θ

DKL(ν‖µ) = inf
ν=φ·µ
E[ν]=θ

∫
Ω
φ(x) log φ(x)dµ(x).

Define continuous capacity via:

Capθ(µ) := inf
x>0

∫
Ω xκdµ(κ)

xθ .

As in the discrete case, this is dual to minimum relative entropy.
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Maximum entropy distributions
Observation: This shows that scalings give rise to maximum entropy
(minimum relative entropy) distributions.

Solution given by capacity: If α in the relative interior of Newt(p), then
there exists y > 0 (the scaling) such that ν(κ) = pκyκ

p(y) . That is,

q(x) = p(y ◦ x)
p(y) =

∑
κ

pκyκ
p(y) · x

κ

is the polynomial whose associated distribution is ν (the KL optimum).

What about continuous case? If θ in the relative interior of hull(Ω),
then there exists y > 0 such that φ(κ) = yκ∫

Ω yγdµ(γ) . That is,

q(x) = p(y ◦ x)
p(y) =

∫
Ω

yκ
p(y) · x

κdµ(κ)

is the (torus) scaling of p(x) =
∫

Ω xκdµ(κ) with the desired marginals θ.
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Matrix capacity
Used as a measure of progress for operator scaling:

Cap(T ) := inf
X�0

det(T (X ))
det(X ) ,

where T is completely positive or at least preserves PSD matrices.

Analog to polynomial case: Can we find positive definite Y such that:

Cap(T ) = det(T (Y ))
det(Y ) =⇒ S(X ) := T (Y 1/2XY 1/2)

T (Y ) ,

where S is the scaling of T to doubly stochastic. Why?

Cap(S) = inf
X�0

det(T (Y 1/2XY 1/2))
det(T (Y )) det(X ) = inf

X�0

det(T (X ))
det(T (Y )) det(Y−1/2XY−1/2)

This equals det(Y )
det(T (Y )) · Cap(T ) = 1 ⇐⇒ S is doubly stochastic.

See also [Franks] for different marginals: CapA(p) = infX�0
detA(T (X))

detA(X) .
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Invariant theoretic (non-commutative) capacity

What we already saw at the beginning (and last week): Let
π : G → GL(V ) be a group representation, and define for v ∈ V :

Cap(v) = Cap0(v) = inf
g∈G
‖π(g)v‖2,

the minimum norm over the orbit of v .

In the commutative (torus) case, this is precisely a polynomial capacity
problem. More generally in this case, polynomial capacity, entropic
capacity, invariant-theoretic capacity all coincide. Also maximum
likelihood estimation (see [Améndola-Kohn-Reichenbach-Seigal]), and
unconstrained geometric programming (see
[Bürgisser-Li-Nieuwboer-Walter]).

In the left-right action case, we know that matrix capacity and
invariant-theoretic capacity coincide.

Are there other connections between these notions of capacity?
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Thanks!

Thanks a bunch for joining on this course!

Feel free to ask me about anything capacity-related or stability-related at
any time. I am generally interested in any connections to these concepts.

Also feel free to give any feedback on the course. This is only the first of
hopefully many times I will discuss this content. And I like to think of
myself as someone who can take and utilize criticism, however harsh. So
please feel free to test me on this!
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